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In this expository paper we will discuss the geometry of differential equations.
On the one hand this subject has very classical origins going back to the earliest
systematic studies of differential equations. On the other hand, in much of this half-
century, its main thrust has been more towards structural and foundational matters
within the theory than towards applications to particular equations. However,
recently this balance has been changing and there are indications that this type
of geometric understanding of differential equations is of value in understanding
geometric and analytic problems.

In this paper the emphasis will be on illustrating the general theory rather than
explaining it. Thus we will attempt to illustrate how the geometry of differential
equations may be used to gain insight into selected particular equations and classes
of equations. The examples we have chosen will for the most part be elementary.
The presentation is designed to show how one may look at familiar materials in
PDE theory in a somewhat more geometric fashion.

‘What do we mean by a “geometry”? In the first approximation, this will mean
a pair

(BG - M ’ ¢)
where M is an n-manifold, G C GL(n,R) is a Lie subgroup and Bg — M is
a G-structure on M, and ¢ is a connection on Bg — M. (Actually, Bg will
sometimes turn out to be a sub-bundle of a higher order coframe bundle and ¢ will
be a pseudo-connection, but these refinements will not be insisted upon here.) To
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the geometry (Bg — M, ¢) we may invariantly attach other objects, such as the
curvature and geodesics of the connection ¢.

The main general observation is that to a differential equation (ordinary or
partial) one may canonically attach a geometry in the above sense. More precisely,
given a differential equation E and a group I of admissable transformations (for
example gauge, point, or contact transformations, as explained below), there is, un-
der mild regularity assumptions, an intrinsically associated geometry. For general
PDE systems, including many interesting special cases, the pseudo-connection ¢
will be unique. However, the construction

(E,T) ~ (Beg — M, ¢)

is somewhat subtle, and in fact the general result that the construction is a finite
process has (to our knowledge) never really been proved. In this paper we will
usually think of this process as a “black box™; in the literature it is more formally
known as the equivalence problem. The consequences of the construction will be
discussed in the text for a number of examples. In the Appendix we have worked
through the “black box” in these examples. Here we emphasize the fundamental
point that there is a natural geometry associated to a differential equation. Thus
to a differential equation one may invariantly attach its curvatures (classically
known as differential invariants) and the notion of completeness (which pertains
to existence of global solutions).

Although the association of a geometry to a differential equation may not
be generally familiar, certain aspects of this construction—"partial geometries”,
s0 to speak—are, of course, well known. For example, many equations are
written in “almost canonical” coordinates that do have physical significance, so
that coordinate calculations have at least partially invariant meaning. Or again, the
symbol (and sometimes sub-principal symbol) of a partial differential equation,
which is usually discussed in a non-invariant way, turns out to have geometric
meaning. Our point is that consideration of the full geometry associated to a
differential equation can sometimes supplement these existing methods.

Before turning to a discussion of the contents of this paper, we would like to
suggest what the objectives of a “geometry of differential equations” should be.
First and foremost, the theory should provide new information and perspectives
on solutions! to differential equations. In fact, the classical theory was originally
developed in order to provide explicit solutions to interesting differential equations,
and then later it sought to provide explicit methods (integral formulas, etc.) for
constructing the solutions (see [I7]). A second objective of the theory is to treat
(B¢ — M, ¢) as a geometric object of interest in its own right. Thus, as we
shall illustrate below, certain interesting differential equations may be uniquely
characterized in terms of their associated geometry.

Perhaps one may think here of the subject of algebraic geometry. Its original
objective was to solve algebraic equations. Later the geometric objects these

IIn fact, as we shall illustrate below, the theory once again raises the question “What is meant by a
solution to a differential equation?”
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equations define—the algebraic varieties—became an object of interesting study in
their own right. In algebraic geometry the above two objectives are now basically
coincident. As to what will happen with the geometric theory of differential
equations, it has been said that it is easier to invent the future than to predict it.

‘We now proceed to give an outline of the contents of this paper.

In Section O we give a brief discussion of differential equations and their
equivalence under various natural groups of transformations. In addition, we give
a sketch of how one may canonically associate an exterior differential system to a
differential equation. We do not belabor the technicalities of this construction as
these may be found in the literature (see for instance, [2]) and, in any case, they
will be explained in the examples.

In Section 1 we study two elementary examples—the first being the geometry
associated to the second order ODE

d? d
'CE:Z' = f <xaya ﬁ) (1)

with the group being induced by coordinate transformations in the zy-plane. The
geometry associated to this simple example is extremely rich and, with hindsight,
may be seen to portend the double fibration construction of twistor theory. The
geodesics of the canonical connection associated to (1) turn out to give solution
curves to the equation together with a distinguished choice of parameter defined
up to a linear fractional transformation; this leads to an intrinsic notion of com-
pleteness for solutions of (1). An interesting observation is that the second order
ODE above has a natural “dual equation”. It turns out that the “curvature” of (1)
has two principal components—the vanishing of one (or the other) being equiv-
alent to the condition that the equation (or its dual) is the geodesic equation of
a projective connection. E. Cartan observed that in the latter case, generically,
equation (1) has a complete set of first integrals expressed rationally in terms of f
and its derivatives.

In the Appendix we have worked through the equivalence problem for (1). In
fact, this simple example is somewhat subtle and illustrates many aspects of the
procedure of associating a geometry to a differential equation.

In our second example, we study the geometry associated to the non-linear
scalar PDE

us + g(z,t, u)us = h(z,t,u), gu # 0. (2)

It is observed that this geometry is equivalent to the geometry associated to (1).
This leads to an intrinsic notion of completeness for solutions of (2), and of global
integral surfaces of the exterior differential system associated to (2). We will show
that the sign of the curvature associated to the geometry governs the development
of singularities of classical smooth solutions u(z, t) to (2).

Next, in Section 2, we turn to the geometry associated to the non-linear scalar
conservation law

ug + 05 (F(z,t,u)) =0, Fuyu #£0 (3)
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where 8, denotes the total derivative with respect to the z variable. This geometry
is a refinement of that associated to (2) since two distinct classes of scalar conser-
vation laws may be equivalent as PDEs. There is again a notion of completeness
and of global integral surfaces of the exterior differential system associated to (3).
For example, any translation-invariant conservation law
ur + f(w)uz =0, fl(u)#£0 4)

where f : R — R is a smooth function defined on all of R, is complete. Again
we interpret classical results on the existence or non-existence of global smooth
solutions u(z, t) in terms of the sign of the curvature of (3). Finally, for equations
such as (4) the classical results on global existence and uniqueness of “shock
solutions” (see [20]) to the equation are discussed in terms of the geometry of the
global, smooth integral surface of the associated exterior differential system.

In the Appendix we discuss the equivalence problem associated to the scalar
conservation law (3).

In Section 3.1 we study the exterior differential system associated to a hyper-
bolic PDE system

uy +atg +bvy +f =0
vy tecugy +evy +9 =0

(5)
where the coefficients functions are functions of z,y,u and v. This exterior
differential system is given by the data (M ; Q1,£2,) consisting of a 4-manifold M
together with a pair of transverse, decomposable 2-forms £y, £,. This relatively
simple structure turns out to have a very rich geometry, the basic aspects of which
we explain in the Appendix. For example, many interesting non-linear PDEs
(5) are explicitly linearizable as exterior differential systems—i.e., they may be
linearized by a suitable contact transformation. In the Appendix we give necessary
and sufficient conditions on the torsion and curvature of the geometry associated
to (5) that its associated exterior differential system be linearizable.

In Section 1 we discuss conditions on the curvature of (1) that imply that
there be a complete set of first integrals of (1). For PDEs one analog of having
a complete set of first intergals is that there should exist explicit formulae for the
general solution of (5) of the form

u=U(z,y,a(z), (), .., a® (@), B(), B (W), - - -, BE(v)) (©)

v =V(z,ya(),d(),...,e")(z),8), 8 1), 5 W)
where & and 3 are arbitrary functions of one variable. This is closely related to
the concept of Darboux integrability of the exterior differential system associated
to (5), and in Section 3.2 we will express the necessary and sufficient conditions
for Darboux integrability at level one (roughly, this is equivalent to the existence
of (6) with k = 1) in terms of the vanishing of suitable components of the torsion
and curvature of (5). This result is then illustrated by a number of examples.
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In Section 4.1 we begin a discussion of translation-invariant hyperbolic sys-
tems of the form

uy +a(u, v)uz +b(u, v)v; =0

vy +e(u, v)ug +e(u, v)vy =0.

(7)

The exterior differential systems associated to (7) are always linearizable. For a
general hyperbolic system (5) we may intrinsically formulate the condition (which
we call characteristic completeness) that the non-characteristic initial value prob-
lem of the associated exterior differential problem admit global, smooth integral
surfaces. Then we show that a wide class of equations (7) satisfy the condition to
be characteristically complete, and we illustrate this result in several examples.

In Section 4.2 we tie in the classical concept of genuine non-linearity of (7)
with the discussion of the elementary equation (2). Then we derive, from our
perspective, the well-known result that genuinely non-linear systems (7) do not
admit global smooth solutions with compactly supported initial data. On the other
hand we will show that in this case there exists a unique, global smooth integral
surface for the initial value problem of the associated exterior differential system.

Finally, in Section 4.3 we discuss the case where (7) is given as a hyperbolic
system of conservation laws

uy +0z (f(u,v)) =0
_ (8)

vy +0:(9(u,v)) = 0.
As mentioned above, for smooth non-characteristic initial data there is a unique,
global smooth integral surface S for the associated exterior differential system.
For R2 = {(z,y) : y > 0} the mapping

7:5—R: 9)

is shown to be proper. We may think of S as the “geometric” solution of (8).

On the other hand, it is known [20] that under suitable conditions on the
initial data and with the assumption that (8) is genuinely non-linear, there is a
unique global shock solution. It is of interest to compare the geometric and shock
solutions.

For a scalar conservation law, the shock solution arises by taking a suitable
cross-section of (9). We may say that the geometric solution “captures” the shock
solution.

For a system of conservation laws, the situation is more complex. It turns out
that on the uv-plane there are two naturally defined pairs of families of curves.
The first pair consists of the two foliations px, p, given by the level sets of the
Riemann invariants. The other is the two families 65, 6, of jump curves obtained
by imposing the Rankine-Hugonoit (or jump) conditions. At each point of the
uv-plane the §-curves and p-curves osculate to second, but generally not to third,
order.

In general, the two families of §-curves do not define a pair of (local) foliations
of the uv-plane—the relation defined by a §-curve is symmetric and reflexive but
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not necessarily transitive. The condition that §, and 6, define a pair of foliations is
seen to be given by a pair of second-order PDEs for the defining functions f(u, v)
and g(u,v) of the conservation laws (8). (These equations may be explicitly
solved.) We shall call such hyperbolic systems of conservation laws special. For
special systems, the §-curves and p-curves coincide since two foliations which are
everywhere tangent must coincide.

We formulate and study the Riemann problem for the exterior differential
system associated to (8). For this case, it will be shown that the geometric solution
“captures™ the shock solution if, and only if, the system is special. Special
systems form a remarkable class of hyperbolic conservation laws—for arbitrary
smooth initial data, there appears to be a unique shock solution to each of these
systems arising as a cross-section of (9); in particular, the shock solution should
be piecewise smooth if the initial data is piecewise smooth. On the other hand, for
non-special systems, it seems necessary to perform some sort of “PDE surgery”
on S in order to obtain an integral surface that captures the shock solution. We
conclude the paper with a brief discussion of this point.

Preliminaries

o i

- el

Recall that a first order PDE system may be written in coordinates as
F*(z*, u®(z), du(z)/dz') = 0, p=1,...,m (1)

where 2 = (z!,...,2") € X C R and u = (ul,...,u*) € U C R* are the
independent and dependent variglbles respectively. Introducing variables p{* to
stand for the derivatives du® /8z*, we consider the locus in zup-space defined by

M ={F¥(z}, u*, pf) =0, p=1,...,m}.

We assume M to be a smooth manifold. Clearly, a graph mapping X — M given
by z — (z, u(z), p(a:)) is a solution to (1) if, and only if, the differential forms

0% = du® — pfdz’ )
restrict to be zero on M. This suggests that we more generally consider immersions
f:N—=M

of a manifold N into M which satisfy
e =0, a=1,...,s. (2)

Since
Fr QY (M) - Q*(N)
is a mapping of differential graded algebras, i.e., f* commutes with exterior

derivative and wedge products, we should consider the differential ideal T in
Q*(M) generated by the 6. Immersions satisfying

fr0=0, 6eT
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are the same as those satisfying (2) and are called integral manifolds of the dif-
ferential ideal Z. The pair (M, Z) consisting of a manifold M together with a
differential ideal Z C Q*(M) is by definition an exterior differential system.

This construction of associating an exterior differential system to a PDE
system given in coordinates may be extended to higher order systems, either
directly using higher order jet coordinates and the associated contact forms (see,
for instance, [2]) or by rewriting the higher order system as a (larger) first order
system.

How invariant is the above coordinate construction of an exterior differential
system associated with a PDE system? In an increasing order of generality there
are four natural types of change of variables associated to (1):

Classical transformations: These are induced by a change & = #(z), @ = @(u)
of independent and dependent variables separately. Geometrically we are viewing
(1) as imposing conditions on the differential of a mapping

X —U
n n
R” R®,

Gauge transformations: These are induced by a change of variables of the
form # = #(z), & = u(z, u). Here we are viewing (1) as imposing differential
conditions on cross sections of a fibration

U C Rn+s

1
X C R"

Point transformations: These are induced by the following change of variables
% = #(z, u), @ = i(z, u). Now we are viewing (1) as imposing differential
conditions on an immersion

X — RS

n
R®

where we have happened to write the immersion in (1) locally in the form of a
graph (z*) — (2, u®(z)).

In all the above.transformations, the change 5 = p(z, u, p) is induced by
differentiating the change among the z, u variables. The last type of transformation
we shall consider is of a different character.
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Contact transformations: These are induced by a change of variables £ =
Z(z,u, p), & = 4(z, u,p),and § = p(z, u, p) which map M to itself and
preserve the differential ideal generated by the §°.

More or less by construction, the association of an exterior differential system
toa PDE system is contact invariant. For a given problem we may therefore choose
the group I"to be generated by the classical, gauge, point or contact transformations
of (1). Under point transformations there is no notion of “independent” and
“dependent” variables. More generally, under contact transformations there is not
even a notion of “base” variables. To illustrate the difference, we note that under
contact transformations the following equations for a function u(z, y):

Upg — Uyy = 0 and Upaplyy — uiy = -1

are globally equivalent even though there is no change of variables in ZyYu-space
which will convert one of these equations into the other. Special contact trans-
formations (Legendre transformation, hodographic method) have of course been
classically used to study differential equations (see, for instance, [12 ). But the
systematic utilization of the invariants of a differential equation under any of the
above groups (as in Klein’s Erlangen Program) has not been so much an aspect
of the modern theory of differential equations. In the following we shall illustrate
the use of each of the above groups.

Two Elementary Examples and their Geometries

In this section, with the help of two elementary examples, we shall show how
the geometry associated with a differential equation might be used to deduce
interesting properties of the solutions of the equation. For both examples, the
geometry of the defining equation have been worked out in the Appendix.

EXAMPLE 1: The second-order ODE. Consider the differential equation

d? d

d—zng(m,y, ﬁ) (1)
Of course, such equations have been objects of study for over three centuries,
with a primary goal being to describe the solutions in a reasonably explicit way.
The classical theory generally concentrates on constructing “first integrals” of the
equation, with the most common technique being that of assuming some sort of
symmetry, so that some version of Noether’s Theorem can be applied to yield a
conserved quantity, i.e., a first integal.

We shall study (1) under the equivalence relation given by point transforma-
tions. Thus, we shall think of (1) as a second-order ODE for curves on a surface
S, where z, y are local coordinates on S and (1) is the ODE for those curves
(a:, y(m)) which are graphs over the z-axis.

To study (1) geometrically we consider the exterior differential system 7,2
in zyp-space, henceforth denoted by M, generated by the 1-forms

6 =dy—pdz and w=dp— f(z, y, p) de
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with independence condition given by the 1-form o = dz # 0. Integral curves
¢ : R — M of the differential system

f=w=0
satisfying the transversality condition ¢* (&) # 0 are in one-to-one correspondence
with solution curves of (1).

In intrinsic terms, M = P(T'S) is the projectived tangent bundle of S and
z, y, p are local coordinates in the open set of tangent directions £ for which
dz(£) # 0. The equations § = w = 0 define a field of line elements on M whose
integral curves project to S to give solutions to (1).

By construction, M is a contact manifold with contact structure defined by the
1-form #. Diffeomorphisms of M which preserve the differential ideal generated
by § are classically called contact transformations. Under such transformations, a
century-old theorem of Sophus Lie states that every ODE of the form (1) is locally
equivalent to the “flat” model

d¥y 0

Zx—z‘ — .
Although this is an interesting geometric fact, it is well known that finding a
contact transformation taking (1) into the flat model involves solving a PDE for
the generating function of the contact transformation. Thus Lie’s resultis generally
of little help in explicitly solving (1).

In the following, we shall instead study the geometry of (1) with respect to
the smaller pseudo-group I of those contact transformations of M which preserve
the differential ideal J generated by the 1-forms

a=dz and 8 =dy—pdz.

Clearly this is the same as the ideal generated by dz and dy and so such contact
transformations are in fact induced by point transformations. Following Cartan,
we will explain the consequences of a geometric construction that singles ouF a
large class of second-order ODEs that may be (globally) explicitly solved, in splFe
of there being no assumption of symmetry. This will illustrate how a geometric
study of a differential equation can provide new perspectives on solutions to the
equation. .

The starting point is to observe that the ideals Z and J on M determine a
canonical double fibration

where ker Ax = {c, 8}* and kerp, = {0,w}* define a pair of line fields on M
with S and T the locally defined quotient surfaces. Geometrically, viewing (1)
as defining a 2-parameter family X of paths on a surface S—each point s E S
and each tangent vector £ € TS determining a unique path ¢ € Z—the quotient
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surface £ may be viewed as the “space of solutions” of the second-order ODE (1)
onS.
Inlocal coordinates z, y on S and o, 7 on X, the solutions of (1) may be written
as
F(z,y,0,7)=0 (2)

where for each fixed o, T the above relation gives a solution curve to (1)—i.e.,
o, T are constants of integration. Explicitly, the equation F' = 0 describes the
image of the mapping (A,p) : M — S x I.

Note that this geometric picture is symmetric with respect to S and Z. In other
words, while each point of T represents a curve in S, dually, each pointp € S
represents a curve p(A~!(p)) in Z. It is easy to see that the 2-parameter family of
curves in T defined by (2) are the solutions to a certain second-order ODE in the
or-plane (i.e, X)

d*o do

P (o). o

The relation between (1) and (3) is symmetric. In the classical literature,
these two second order ODEs were said to be “dual” equations. By construction,
functions on T are first integrals of (1), and dually, functions on S are first integrals
of (3).

The goal of Cartan’s approach was to find an explicit procedure for find-
ing functions on M which are the pull back of (non-constant) functions on 2.
Clearly, the level sets of such functions implicitly define the solution curves of (1).
More exactly, Cartan wanted to describe classes of equations (1) for which such
procedures existed.

Cartan’s method is quite general, but here we want to describe one particular
such class of equations. Recall that the geodesics of a Riemannian metric on S
are locally given by an ODE (1) where f is a cubic polynomial in dy/dz. More
generally, Cartan [6] has defined the concept of a normal projective connection,
and shown that the geodesics of such a connection satisfy an equation of the
form (1) where \

f

e 0. (4)
Conversely, every such equation can be realized as the geodesic equation of a
unique normal projective connection on S. Curvature invariants of this connection
then produce functions on S which are generally non-constant.

Cartan [7] showed that the condition on (1) that its dual equation (3) describe
the geodesics of a projective connection on I is that the function f satisfy the
differential equation

d* d d
Eﬁ(fpp) - 4%“"-'/) + fP (4fpy - d_m(fpp)) - 3fyfpp + 6fyy =0 (5)

where d/dz denotes total derivative with respect to z. Moreover, he showed
that, in this case, starting with only the knowledge of the ideals Z and J on M,

-

i g, i
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which, as we have seen, are completely determined by equation (1), there is an
algorthmic procedure to compute the curvatures of the projective connection on Z,
thus yielding first integrals of the original equation (1). It follows that the class of
equations (1) satisfying (5) should be geometrically integrable in the sense that a
complete set of first integrals (or conservation laws) may be determined explicitly
from f and its derivatives.? Thus, Cartan /7] was able to state the following result:

Every second-order ODE (1) satisfying (5) may be integrated by a pro-
cess involving only algebraic operations, differentiation, and quadra-
tures.

Remark: Strictly speaking, Cartan’s statement is not quite correct. It turns out
that, up to equivalence, there is a 1-parameter family of such equations whose
integration by Cartan’s method requires solving a Ricatti equation, which is well-
known not to be solvable by quadrature. (This is caused by the fact that the
projective curvatures on X turn out to be constant.) This expectional family of
equations is uniquely characterized by the condition that its symmetry group is
SL(2,R) (see [5] for more details).

The actual computation of the first integrals of the above equations requires
a detailed study of the G-structure associated with the above double fibration.
(The G-structure construction for (1) is described in the Appendix.) Associated to
the G-structure is an intrinsic connection ¢ whose curvature ® has two principal
components, which we denote by K1 and K. These components have the property
that K, vanishes if, and only if, the ODE (1) is the geodesic equation of a projective
connection ¢s on S and K vanishes if, and only if, the ODE (3) is the geodesic
equation of a projective connection ¢z on Z. Furthermore, the curvatures of ¢x
may be computed in terms of ® and therefore in terms of the original equation (1).
In fact, they may be expressed rationally in terms of f and its derivatives. The
functions on M constructed from the curvatures of ¢5 together with their covariant
derivatives will then generate the desired set of first integrals of (1).

Cartan’s approach to integrating differential equations is rather general. It has
been extended to third order ODEs by Chern [/0] and to fourth order equations
by Bryant [1] in connection with his work on exceptional holonomies. In fact,
Chern’s paper directly anticipates several aspects of twistor theory while Bryant’s
makes explicit reference to it. To paraphrase a famous remark, one may see in
the double fibration picture a “piece of twistor theory that fell into the early 20th
century”. :

EXAMPLE 2: Scalar first order PDE. We shall now discuss the geometry associ-
ated to a first order quasi-linear PDE

uy + g(z, t, v)uz = h(z, t, u). (6)

This equation is usually introduced at the beginning of introductory textbooks on
PDE theory and one may well wonder what is new and interesting that the geometry

2In recent years there has been much interest in “integrable systems”. The Cartan approachprovides
a complementary, perhaps more directly geometric approach to integrating a differential equation.
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associated to (6) can tell us? We shall show that when (6) is geﬁuinely non-linear
(a condition defined in the PDE literature on this equation to mean that g,, # 0),
the geometry associated to (6) under equivalence by gauge transformations is
equivalent to the geometry associated to the ODE (1) above under equivalence by
point transformations. Having already worked out the latter geometry we shall
then be able to apply the results to draw conclusions for (6).

To explain this identification we return briefly to EXAMPLE 1. We may
equivalently give the above data (M; Z, J) of the 3-manifold M with Pfaffian
systems I, J as the data (M ; @, Q) consisting of the 3-manifold M together with
a pair of everywhere linearly independent 2-forms @, €, defined up to non-zero
multiples and satisfying the non-degeneracy condition that the field of 2-planes
®LAQL be a contact structure. To explain this we observe that @+ and Qt
are linearly independent line fields on M, and therefore span a field OLAQL of
2-plane elements. Our non-degeneracy condition is that this rank 2 distribution be
non-integrable. Given Z and J as in EXAMPLE 1 where locally 7 is generated by
1-forms 6, w and J is generated by 1-forms o, 6, we may set

v

bd=0rw and Q=anl.

Then ®LAQ* is the field of 2-planes defined by = 0 and the non-degeneracy
condition is #adf# # 0. The construction

(M;Z,7)— (M; ®,Q)

is easily seen to be well-defined and reversible.
We now proceed to show that the PDE (6) gives rise toa (M; @, Q) structure.
Letting M denote ztu-space, we consider the 2-forms on M defined by

® = (du — hdt) a(dz — g dt) and Q=dznadt

The motivation for introducing ® is that on graph surfaces (z, t) - (z, ¢, u(z, t))
the exterior equation
=0

is equivalent to the PDE (6). Thus the exterior differential system ® = 0 with
independence condition Q # 0 models (6).

Clearly the 2-forms ® and Q are well-defined up to non-zero factors under
gauge transformations. Furthermore, since Q = (dz — g dt)adt, we see that ®
and Q have the common linear factor

6 = dz—gdt.
Our assumption of genuine non-linearity now implies that

6add=gydundzadt#0

and so 6 defines a contact structure on M. Thus, to the gauge-equivalence class
of non-linear PDEs (6) is associated a (M ; @, Q) structure, and conversely.

e s SO, ol SN s

Robert Bryant, Phillip Griffiths, and Lucas Hsu 13

Now, in view of the above identification of the two geometries associated
with (1) and (6), the G-structure construction for (1) now associates to the gauge-
equivalence class of (6) a principal G-bundle (Bg — M, ¢) with connection ¢.
In the following we shall discuss how the geometry (Bg — M, ¢) determines the
global behavior of solutions of (6).

Here, global has the following intrinsic meaning: Associated to the connection
¢ are its geodesics, which are a special class of curves in Bg equipped with a
distinguished parameter 7 (see the Appendix for details). Two geodesics in Bg
that project to the same curve v in M have their parameters related by a linear
fractional transformation

ar+b

—bc=1.
o 3 d’ ad — be

7=

We shall say that v is complete in case its parameter 7 takes values in all of R
viewed as a subset of the projective line . The geometry (Bg — M, ¢) is then
defined to be complete in case all such curves v are complete.

In the case of the ODE (1) above, the curves v are the canonical lifts to
P(T'S) of solution curves to (1). In the case of the non-linear PDE (6), the curves
~ are the characteristic curves (to be explained momentarily). In both cases the
completeness of the curves 7 gives an intrinsic meaning to the concept of a global
solution to (1) or (6). In examples this concept turns out to agree with what one
usually thinks of as a global solution to a differential equation.

We now formulate the initial value problem of the PDE (6). Recall that
associated to (6) is the characteristic vector field

on M. Invariantly, X is the vector field uniquely defined up to scaling by the
relation X o ® = 0. We note that X depends only on the exterior differential
system @ = 0 and not on the independence condition Q2.

Non-characteristic initial data is given by an immersed curve I

s (m(s), 1(s), u(s))

which is nowhere tangent to X. Flowing I along integral curves of X then
generates the general solution surface N to the exterior differential system ® = 0.
At points of N where Q # 0 the mapping

N — zi-plane
is locally one-to-one. Thus, near such points, N is locally given as a graph
(2, 1) — (2, t, u(z, 1))

where u(z, t) is a solution to (6). This is the method of characteristics, here
illustrated in its simplest form.
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Now what does the geometry (Bg — M, ¢) tells us about (6)? First, in the
flat case, where the curvature of ¢ is zero, working through the identification of
the geometries associated to (1) and (6) shows that the PDE (6) is gauge equivalent
to the (inviscid) Burgers’ equation )

U + uugy = 0. @)
If, in this case, we consider the corresponding exterior differential system
b =dun(dec—udt)=0 (8)
on M, then there are global solutions to (8) as follows: Given an initial curve
8 (s, 0, uo(s)), sER,

we may uniquely extend this to a mapping of R? giving an integral surface of (8)
by
(s, t) = (54 tuo(s), t, uo(s)).

This solution may be said to be global for the geometric reason that the char-
acteristic curves s = const are geodesics for the connection ¢ that are complete
in the sense described above. The question of whether the projection N — R2
is one-to-one or onto will be taken up in the next section when we discuss the
“shock” behavior of (7).

What does this perfectly global solution to (8) say about classical solutions to
(7)? We let R2 and R} denote the half-space ¢ > 0 in R* and R respectively,
and we have the picture

I CNCRYIS(z, ¢t u)
60T lﬂ' l
R CR% 35 (z,1)

where R is the z-axis ¢ = 0 and the initial data is given by &, and we seek to
extend &p to as large a neighborhood of the initial curve ¢ = 0 as possible. To see
that we may in general expect difficulties we note that up on N ‘

7*(dz A dt) = (1 + tug(s))ds  dt. 9)

Thus, if there are points on the initial curve where uy(s) < 0 (which will certainly
happen if uo(s) is compactly supported and not identically zero) then 6y cannot be
extended to a smooth map é defined on all of Rﬁ_. This is also evident from the
explicit formula

6(z, t) = (z, t, u(z, t))
where u(z, t) is defined implicitly by the equation

u = up(e — tu). (10)
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Returning to the general discussion we ask what is the meaning of the van-
ishing of the curvatures K, K3 of ¢? The condition K; = 0 is sufficient to
guarantee that the characteristic equation associated to @ = 0 has a complete set
of first integrals. Thus the characteristic curves of the PDE (6) may be found
explicitly. In this case we may then write down an implicit equation for u which
solves the initial value problem, as was done in (10) for Burgers’ equation.

Perhaps more interesting is the condition K = 0, which is the case when the
second order ODE (1) associated to (6) is the equation of geodesics of a projective
connection on a surface. For example, suppose that (6) is

us + f(u)ug = h(z, t, u).
Our non-linearity assumption is f/(u) # 0, and so we may write
h(z, t, u) = H(z, t, u)/f'(u)
for some function H. The condition K, = 0 then implies that
H(z,t,u) = A+ Bf(u) + Cf(u)* + Df(u)’.
Geometrically the ODE associated to (6) arises as follows: In the picture
R*> (z, t, u)
Ln !
R?> (z,1)

the projection to R? of the characteristic curves of this equation will, by our
non-linearity assumption, generate a 2-parameter family of curves which are the
solutions of an ODE of the form (1) in R2. For instance, in the case K; = 0 as
above the ODE is

d’z dz dz\? dz\?
S _yin(B)eo (E)en(E). o

The initial value problem for (6) then has the following meaning: Along an initial

curve ¥
s (2(s), (s))

in the zt-plane we prescribe the initial values (dt/dz)(s). Then we take the
integral curves of (1) emanating from + with the given initial values. As long
as these curves don’t cross or focus, we will have a classical solution to (6). In
fact, it is exactly the focusing of geodesics that gives classical development of
singularities. This phenomenon is well-known in the study of wave fronts and the
Hamilton-Jacobi equation.

Thus for example, suppose that (11) is the geodesic equation for a complete
Riemannian metric in the zt-plane whose Gauss curvature K > 0. (For Burgers’
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equation (7) this is the situation, with K = 0.) Suppose also that -y is a geodesic
and that there is a sub-interval of v along which the angle of the initial data is
decreasing. (This is the geometric form of the assumption uy < O in Burgers’
equation.) Then the geodesics which represent the projections of the characteristic
curves on the surface N will focus in the zt-plane and thus singularities will
develop. If, however, the Gauss curvature KX is strictly negative ansi the initial
data is appropriately slowly varying, then the spreading of geodesics as given by
the Jacobi equation will imply that there is no focussing and global solutions to
the PDE will exist. Pictorially, moderate ocean waves will not break along a
negatively curved beach.

The Scalar Conservation Law

In EXAMPLE 2 above we considered the geometry associated to the scalar first
order PDE

us + 9(z, t, wug = h(z, t, u). (1)
We assumed that g, # O (i.e., genuine non-linearity) and saw that the geometry
of (1) was equivalent to that of a second order ODE

d*y dy
The initial value problem and development of singularities of solutions to (1) then
had interpretations in terms of the “path geometry” defined by (2).
In this section we will look more deeply into singularity development and

so-called “shock solutions” in terms of a geometry associated to a special subclass
of equations (1)—the ones which can be written as a scalar conservation law

ut + 0 (F(z,t, u)) = 0.

To motivate the introduction of this class of equations, we assume given
a PDE (1) whose associated geometry is complete. Given a non-characteristic
initial curve T, we sweep out a surface S by flowing I along the characteristic
vector field X. This constructs S as an integral surface of the exterior differential
system @ = 0 associated to (1). If T is given in coordinates by s +— (s, 0, uo(s))
and we set R2 = {(z, t) : ¢ > 0}, then suitable conditions on the initial data (see
below) plus the completeness of X will insure that

7:S - RY (3)

is surjective. Singularities of a solution u(z, t) to (1), defined say for 0 <t < 2,
will then develop in relation to the projection in the zt-plane of the fold locus F
where the differential 7, drops rank. We may seek to understand this situation by
applying singularity theory to the projection 7.3

3The idea of multi-valued solutions to PDESs is of course classical. The issue is to show in examples
that these exist and have interesting properties. In this regard we would like to call attention to the
recent interesting paper [9] by Caflish et al which studies the branching behavior of multi-valued
solutions to certain non-linear PDEs.
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Typically F will be a union of curves, with the typical one looking something
like a classical “cusp” (Figure 2.1). Over the linest = t_,1 = 1, t = ¢4 the
graphs of the projection will resemble Figure 2.2. More generally the fold locus
will project to a curve that might contain several such cusps (Figure 2.3) with the
following cross-sections of S over the lines ¢ = ¢; (Figure 2.4).

So far, the whole picture is gauge invariant. However, if, as is commonly
done in the PDE literature, we seek to define a “generalized solution” to (1) as a
cross-section (Figure 2.5) satisfying certain local conditions (which are typically
not invariant under gauge transformations), then we need more information than
that given by the gauge equivalence class of (1). To determine the cross-section u,
we need to know the breaking curve along which u jumps from one sheet of S to
another, and we also need to know to which sheet » will jump as it crosses this
curve. This data cannot be determined from the gauge equivalence class of (1), so
we will consider a special subclass for which a more restrictive geometry can be
defined.

F
1
Q R
i
to P
1.
z

Figure 2.1
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EXAMPLE 3: The scalar conservation law. We now discuss the geometry associ-
ated to a scalar conservation law

up + 0 (F(z, t,u) =0 (4)

where 8, denotes total derivative with respect to z. This is an equation of the form
(1) where g = F,, and h = —F,. The associated exterior differential system is

0 = @ = (du + Fy dt) A (dz — Fydt) = d(udz — F(z,t,u) dt).

Note that & is an exact 2-form.*

This suggests that we try to construct a geometry from the data (M; 9, Q)
consisting of a 3-manifold M endowed with two linearly independent 2-forms ®
(which is closed) and Q which is invariant under diffeomorphisms which preserve
& and preserve Q up to a non-vanishing factor. We shall always make the non-
degeneracy assumption on our data that the common linear factor of ® and Q
define a contact structure on M. For simplicity of exposition, we assume that M
is connected and simply connected.

In the Appendix we have worked out the corresponding G-structure problem
for (M; ®, Q). It turns out that there is a principal relative invariant K, and when
K = 0 there is a secondary relative invariant L. The geometry of (M; @, Q) thus
divides into three cases:

() K #0;

In all three cases we will see that there is a canonical affine connection on M
such that the characteristic curves of (4) are geodesics, with a canonical parameter
7 defined up to an affine transformation 7 — a7 + b. We shall then assume that
this geometry is complete. An integral surface S of the differential system ® = 0
with initial curve T as above may then be said to be global in the intrinsic sense
that each characteristic curve in S is defined for 7 € [0, co), where 7 = 0 gives a
pointon T

(ii) K =0,L #0; (iii) K = L = 0.

Definition: Let S be an integral surface for ® = 0. We will say that S has a
singularityat p € S in case Q pulled back to S vanishes at p.

The points of S where Q(p) = 0 are precisely where the differential of 7 in
(3) drops rank. Thus, when the surface S constructed from T has singularities
in this sense, a global classical solution to (4) with the given initial data will not
exist. We will now establish the following result:
Let T be a non-characteristic initial data for (M ; ®, Q) and let Ao(s)
be the real-valued function on T constructed from T and (M; @, Q)

below. There is a curvature function Q associated with the geometry
of (M; @, Q) such that if

Q <0, and  Mo(s) >0

4More generally we may consider equations 8¢ (F (=, t, u)) -0z (G(z, t, u)) = 0, expressing
the condition that the 1-form ¢ = F dz + G dt be closed on solutions.

i gl W g
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for some s, then the global integral surface of the exterior system
& = 0 with initial data " develops singularities. On the other hand,
assuming that the curvatures of (M ; ®, Q) are constants, if the cur-
vature function @ > 0 and the initial data Ao(s) is small relative to
Q, then there exists a global solution to the PDE which (M; ®, Q)
models.

These results are similar to known statements in PDE theory (although there
may not be an exact analog of the existence result); our main point is that they
may be intrinsically formulated in terms of the geometry associated to the PDE.

Intuitively, the function Ag measures the tangent of the “angle” of the unique
integral element at each point of I" relative to Q. Thus Ao(p) = oo is equivalent to
the condition Q(p) = 0.

A special case occurs when (4) is a translation invariant conservation law

f'(w) > 0. (5)

In this case, the curvature Q vanishes identically and the condition on the initial
data for blowup is the classical one

us + f(u)uz =0,

ug(s) < 0.

We will now give a proof of the above result in the cases (i) and (ii) above.
Using the results in the Appendix, the argument will apply to case (iii) as well.

Since M is simply connected, in each of the cases (i)—(iii) there will be a
coframing ¢, 6, w of M such that

O=0~rw and Q=qwnb.

The characteristic vector field X = 8, is then dual to o, and we will assume it to
be complete. Although the structure equations will be a little different in each of
these cases, they all have in common the equation

dd=arw modf (6)

reflecting the non-linearity of (4).

An integral element of the exterior differential system @ = 0 with the inde-
pendence condition Q # 0 is by definition given by a point p € M and 2-plane
E C T, M such that :

Plg=0 and Qlg #0.

Integral elements are thus defined by a linear equation in the tangent space
w—2A0=0, AeR (7

and so the set of all such integral elements forms the manifold

MDD =MxR
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underlying the first prolongation Z( of the differential ideal Z generated by .
On M) we consider the exterior differential system Z' M generated by the 1-form

oc=w-—A#b;

thus by definition de lies in Z() as does ® = fac. Every integral surface S C M
of & = 0 satisfying © 3 0 lifts to a unique integral surface S ¢ M) of 6 =0
satisfying Q # 0 and moreover, every integral surface of o = 0 satisfying Q # 0
is the lifting S c MO of an integral surface S C M of ® = 0 satisfying
Q # 0. The structure equations in both case (i) and case (ii) will give that

dind = (A - Q)arfmodZ (8)

where @ is a curvature of the system.

Now let I"' C M be a non-characteristic initial curve with parameter s along
which 6 # 0. We let S be the flow of I" under X for 0 < t < co. Then S has
coordinates s, t where £ > 0 and is a global integral surface of ® = 0.

The open subset U C S where Q(p) # 0 will contain a neighborhood of I'. In
U the condition ¢ = O defines a function A = A(s, t). We write dA = Aamod @
where \ = £x ) is the Lie derivative of X along the characteristic vector field X.
By (8)

A=22-q. (9)
Thus, for each s the function A(s, t) satisfies a Ricatti equation in ¢ with initial
value A(s, 0). Under the conditions Q < 0 and (s, 0) > 0 for some s, the usual
Ricatti analysis then implies that we will have finite time blowup. This is the proof
of the first part of the above resuit.

We now formulate and prove a converse statement in the special case where
the structure equations have the form

da =0, df = anrw, dv=-Qanb (10)

where @) is a constant.
Setting @ = faw and Q = ad, it is straightforward to verify that the system

(M; ®,Q) models the PDE
up + uu, — Qz = 0. (11)
In fact, in M = R? with coordinates z, ¢, u we may take

a =dt, 0 = dz — udt, w = du — Qzdt, (12)

and then (10) is satisfied. Moreover, the vector fields 9 = 8., 0, = Ou, and
8o = 8; +u 8y + Qx 8, are complete, and thus the 1-forms (12) are the Maurer-
Cartan forms on the unique simply connected Lie group with the structure equations
(10). We will show that
For Q > O with initial data uo(z) satisfying |ug(z)| < VQ, the
solution to (11) exists for all time.
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To see why this result should be true (but not yet to give a proof), we write
Q = ¢* and examine the ODE (9)

/\=,\2—q2

with initial condition A(0) = Ag. For |X¢] < ¢ this equation has a solution for
0 <t < oco. In fact, A(t) is obtained by solving for X in the linear fractional

equation
q- ’\: <q — )‘0) et
g+A g+ Ao

In case (M; @, Q) models the PDE (11) we have

Ao(s) = ug(s).

Proof: For notational simplicity we specialize to Q = 1 so that the characteristic
vector field becomes

X=0;+ud;+z8,.

With a given initial curve
s+ (s, 0, ug(s))
in xtu-space the global integral surface of ® = 0 is
(5,8) = (3 (s—uo(s))e*+1 (s—uo(s))e™",t, L (s+uo(s)) e’ — L(s—uo(s))e™) .
The projection 7 : S — Rﬁ_ is given explicitly by
2z = (s +uo(s))e’ + (s — uo(s))e™® and t=t.
If 7(s, t) = w(5, ) then t = { and, assuming s > 5 and writing
uo(s) — uo(5) = ug(€)(s — 3), §<E<s

we have

(s —35) [(1+ ugp(&)) €' + (1 — ug(€))e™!] = 0.
With the assumption |ug| < 1 this implies that s = §and 7 : S — R% is
one-to-one. To show that 7 is onto we note that

20,z = (14 ug(s)) et + (1 —uh(s))e™* > 0
so that for each fixed ¢
z(—oc0,t)=—00 and  z(4oo, t) = 400
and so the mapping 7 : S — R? is onto. ]

We now return to our discussion of equation (5) where we make the genuine
non-linearity assumption f'(u) > 0. We assume initial data given in the form

z — (z, 0,uo(z)) (13)
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wlhere uo(z) is constant outside of a compact set, say for |z| > R, but where
Ll
ug(z0) # 0 for some zo. Then the situation is this:
(i) the geor{zetry of the equation is complete, so that there is a unique global
smooth integral surface S of the associated exterior differential system ’

D =dun (d:z:—f(u)dt) =0
with the initial curve T corresponding to (13);
(i) the mapping T :S — ]R_Z'_ is surjective but develops a singularity.
We have proved everything except for the surjectivi i
: ‘ jectivity of . Infact,
To see this we ﬂn_r‘lk of S as the half-plane {(s, t) : —co0 < s < 0o tgs(ﬁml’;‘iz
11.136t = 0 maps bljecti\.rely toT". For each fixed sg the half-line s — 50, £>0 maps
bijectively to the half-line (so + tu(zo), t), t > 0. For zg > R we there?ore have

a family of parallel lines, and similarly for z . .
ike Fi ’ o < —R. The picture is i
like Figure 2.6 and from this it follows that 7 is proper. d something

Now in view of (ii) above a natural uestion is whether
con;ervation (5) admits some sort of globa]q“generalized solutioz’r’ 2?; t?; 20111::
&) isa non-linear differential equation care must be taken in defining a g;,ne.ralized
solutl.on. The key observation is that, writing Fwu, = 8, (F(u)) for a smooth
function F'(u) with F'(u) = f(u), alocally bounded, measurable function u(z, t)

may be defined t i i i i istributi
senjsle’ o ilfle 0 be a weak solution to (5) if the equation holds in the distribution

// (oru + 0 F(u))dzdt = 0 (14)

holds for all smooth functions & with compact support in R} = {(z, ¢) : ¢ > 0}
We will be primarily interested in the situation where u is locally bon’mde‘d and of
class C! outside a set of break curves across which u has a jump discontinuit
These break curves will consist of piecewise C! arcs, and if v = (z(0) t(a))),.
Is one such arc then (14) is easily seen to imply the Rankine-Hugonoit (or, Jjump)

condition
[F ()] = s[u] (15)

where s = 2'(0) /t’ (o) is the propagation speed of the discontinuity and [ ]
represents the magnitude of the jump across (thus [u] = u_ — u, where u

A -7

Figure 2.6
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=
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Figure 2.7

and u4 are respectively the left and right hand limits of u(z, t) at a point of 7).
In general the jump condition (15) are not sufficient to uniquely specify a weak
solution to (5), and so one traditionally adds the entropy condition

f(ug) <s< fl(ul). (16)

Geometrically this mean that at a point of the break curve - the two characteristics
should impinge (Figure 2.7). With our assumption that f' > 0 the entropy
condition means that [u] > 0, i.e., u should “jump down” across .

If one now defines a shock solution to (5) to be a weak solution satisfying the
entropy condition, then under rather general assumptions on the initial data (for
instance that it be smooth with compact support) there is a unique, global shock
solution to the initial value problem for (5) (for details, see [20]).

The question now arises: Does the shock solution arise by taking a suitable
cross-section of the proper mapping ™ : S — IR?,_? In particular for the shock
solution u, does (m, t, u(z, t)) lie on the geometric solution surface S for all
(z,t) € RFf? We shall argue that this is indeed the case, at least when the
singularities of 7 are generic.

Referring to Figure 2.1 and Figure 2.2 above, there will be a break curve «
corresponding to each component of the fold locus F. Inside F the jump will
be-known since we must jump from the top sheet to the bottom sheet (jumping
to the intermediate sheet will run us into a singularity on F). Thus, inside the
cusp defined by F we may view (15) as a differential equation for the break
curve 4. More precisely, in this region, equation (15) defines a vector field X.
The genuine non-linearity assumption F/ > 0 implies that, aside from the cusp
points themselves, at each point along F, the vector field X will be transverse

to F. Thus there is a unique integral curve of X which emanates from the cusp
point of F, represented in Figure 2.8 by the dashed line. This is the desired break

curve.
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Figure 2.8

In summary, under the assumption that the singularities of the projection 7
are generic, we have given heuristic reasoning to explain the well-known existence
and uniqueness of shock solutions to (5). The point is that the exterior differential
system perspective naturally leads to the “picture” of the shock solution.

In the following sections, we will see that the situation for hyperbolic systems
of conservation laws (as opposed to a single conservation law) is both more
complex and also more interesting.

Geometry of Hyperbolic Systems

3.1 Hyperbolic Exterior Differential Systems. In the preceeding sections we have
studied the geometry associated to a second-order ODE, a first-order non-linear
scalar PDE and a non-linear scalar conservation law. In each case the geometry
is given by a suitable G-structure B¢ — M with an intrinsic connection ¢ and
the geodesics of ¢ gives rise to solution curves in the case of the ODE, and
characteristic curves in the other two cases. Moreover, each geodesic v has a
natural parameter 7 defined up to an affine transformation 7 — a7 -+ b once we fix
a point of 7, and we may then speak of what it means for v to be complete. With
this concept in hand we could define what it means for an integral surface S C M
passing through a given initial curve to be global.

The curvatures of ¢ had several interpretations. One is that the vanishing
of certain components implied that there were a complete set of first integrals
for the solution curves of the ODE. Another is that the sign of suitable curvature
components could be interpreted as a spreading or focusing of geodesics, thereby
relating to the existence or non-existence of global classical solutions to the non-
linear scalar PDE. Finally, the exterior differential system point of view led to a
picture of the classical existence and uniqueness of shock solutions to the non-
linear conservation law in terms of the geometry of the propermap 7 : S — Ri.

When we seek to study the geometry of less elementary differential equations
the situation is more interesting and correspondingly more complex. We shall now
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discuss certain aspects of the geometry associated to a hyperbolic PDE system.
For further details on this geometry, consult the Appendix and [4].

ExaMPLE 4: Beyond the scalar equation already discussed, the simplest non-
linear PDE is a first order quasi-linear system for two unknowns over a domain
U C R2 We assume that the system is hyperbolic. Then, after a suitable change
of dependent and independent variables, the system will assume the form

Uy +atuy +bvy +f =0
vy +cug +evy +9 =0

(1)

where the coefficients a, b, ... etc. are functions of z, y, u, v. Hyperbolicity of
(1) amounts to the condition that the matrix

=)

have everywhere distinct real eigenvalues. Examples of such equations include
hyperbolic systems of conservation laws for two unknowns in (1 + 1)-dimensional
spacetime.
To write (1) as an exterior differential system, we set
® = —duadz +(adu +bdv)ady +f deady
¥ = —dvadz +(cdu +edv)ady +g dzady.
Integral surfaces of the exterior differential system ® = ¥ = 0 on which

dzady # 0 are locally in one-to-one correspondence with solutions to (1). A
little computation shows that

(@ +&¥)? =2(b+ (e — a) — c€¥)dundvadz ady.
The discriminant of the quadratic polynomial in € is
(e — a)? 4 dbc = (trA)? — 4det A.
Thus, by hyperbolicity, the equation
\ (®@+€¥)? =0

has two distinct real roots £1 < &,, giving rise to two linearly independent 2-forms
Q =P+ &Y and Q; = D + &V satisfying )

QiAQ1 = 0 = Qa0

)
Q1A £ 0.

Definition: A hyperbolic exterior differential system (of class s = 0) on a
4-manifold M is a differential system which can be generated locally by a pair £;
and Q, of 2-forms satisfying (2).
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As we have seen, the quasi-linear system (1) above generates a hyperbolic
exterior differential system. A number of well-known examples of system (1) will
be given below.

Another interesting source of examples are the hyperbolic Monge-Ampere
equations of the form

E (zzozyy — 22y) + Azos + 2B 2oy + C2zgy + D=0 (3)

where the coefficient functions A, B, C, D, and F are functionsof z, y, p = 2z,
and g = z, alone, i.e, they have no explicit dependence on z. In this case, the
exterior differential system in zypg-space generated by the pair of 2-forms

o= dpadz +dgnady
Y = F dpadq + Adpady + B (dgady +dzadp) + C dzadg + D dzady

isahyperbolicexterior differential system. Again, solutionsurfaces of ® =¥ = 0
on which dzady # 0arelocally in one-to-one correspondence with solutions to (3).
The hyperbolicity of (3) is equivalent to the equation (®+¢¥)? = 0 having distinct
real roots. Among the many well-known hyperbolic Monge-Ampere equation of
this type, we cite only the classical hyperbolic Monge-Ampere equation

2 _
ZeoZyy — 25y = —1

and the analog, for timelike surfaces in Minkowski 3-space, of the classical minimal
surface equation

zg Zoe — 2(1 + zz2y) 20y + 22 Zyy = 0. 4)

(This is the Euler-Lagrange equation for the area functional for surfaces of the
form (z,y, 2(z,y)) in 3-space with metric dz? + 2 dz o dy.)

Before going further in the study of hyperbolic exterior differential systems,
we want to impose some non-degeneracy conditions. Recall that a non-zero
exterior 2-form € is decomposable in the sense that Q can be locally written in
the the form Q = a3 for a pair of (linearly independent) 1-forms « and g if, and
only if, QAQ = 0. We say that such an Q is integrable if it can be locally written
in the form Q = f dzady for some local functions z, y, and f. By an elementary
application of the Frobenius theorem, the integrability of Q is equivalent to the
condition that there exist a 1-form w so that dQ = waQ. In this case, the integral
manifolds of  can locally be described by elementary methods. In particular, in
aregion where we can write Q = f dzady, the integral manifolds are just given
as hypersurfaces cut out by a non-trivial equation of the form F(z,y) = 0.

For a hyperbolic exterior differential system (M;Q,, £,), the case where
either of Q; is integrable may thus be analyzed by essentially elementary methods
and will not be further discussed here. Thus, we shall assume without further
mention that the system is non-degenerate in the sense that neither Q; nor ; is
integrable. In this case one may seek to determine the geometry associated to
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(M;Q1, ;) with the non-degeneracy assumption built in from the outset, in a
manner similar to the use of the non-linearity assumption in EXAMPLE 2 and
ExAMPLE 3 above. We shall discuss some of the specific implications of the
equivalence problem in this case.

Before doing this, a remark on the group I of allowable coordinate transfor-
mations is in order. In the case of EXAMPLE 1 we took I to be the group of point
transformations while in EXAMPLE 2 we used for I the gauge group, since under
the larger group of contact transformations any equations of either EXAMPLE 1
or EXAMPLE 2 are locally equivalent to the corresponding trivial model. In Ex-
AMPLE 3 we used a subgroup of gauge transformations which preserve a closed
2-form, since it is only under this smaller group that the “jump conditions” for
weak solutions are invariant. For hyperbolic systems, however, we shall use for I
the full group of contact transformations. Here the geometry is already quite rich.

For instance, suppose we define a hyperbolicsystem (M; Qi, Q,) to be linear
if it is locally contact equivalent to the exterior differential system arising from a
linear hyperbolic PDE system (1). Linear hyperbolic systems include many arising
from non-linear PDEs, such as the equation zy5 2,y — zgy = —1. It turns out (see
the Appendix and [4]) that linear hyperbolic exterior differential systems may be
characterized by the vanishing of certain “curvature” components in the geometry
associated to (M; Qi, Q,) and that in turn this geometry induces on solution
surfaces an intrinsic pseudo-Riemannian metric whose own geometry (constancy
of Gauss curvature, etc.) has meaning for solutions to the original PDE.

In the Appendix we study the equivalence problem associated with the non-
degenerate hyperbolic system (M; Qi, ;) and derive its geometry. A natural
question to ask is: What can that geometry tell us about the original PDE? By
analogy with EXAMPLE 1 and EXAMPLE 2 in §1 above we could ask

(i) for conditions on the curvatures that would allow us to explicitly “solve” the

PDE;

(ii) for a notion of completeness that would guarantee that the exterior differen-
tial system has “global” integral surfaces which project onto the half-plane
R2 = {(z,y) : y > 0} to provide global multi-valued solutions to the PDE
system; and

(iii) for curvature-type conditions that will imply that there are no global smooth
classical solutions to (1).

In this section we will take up (i); in later sections there will be a discussion of (ii)
and (iii).

3.2 Remarks on Integration by the Method of Darboux. For a hyperbolic system
given by (1) or (3) what does it mean to explicitly “solve” the PDE? One notion is
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i seen to be a surface of translation, where the two translation curves are null curves

2 that a general solution is given by an explicit formula In fact every time-like surface (z, y, 2(z, y)) in R? where z satisfies (4) is
l f = X(S’ t, a(s),o/(s), ..., a(k)(3)§ B, B8 @),..., ﬂ(k)(t)) of the quadratic form dz2 + 2dz o dy. This allows us to write the general solution

y =Y (s,1, as),&(s),...,a®)(s); (), B'(2),...,80@1) in the form

u=U(s,t, a(s),a(s),...,a®)(s); B(t),B'(2),...,BH()) ®)
v = V(s,t, a(s), a!(s),. .., a®)(s); B(t),B'(t), . -wﬁ(k)(t))

where o and § are arbitrary functions of one variable. Note that the “function
count” is correct, since, in particular, initial data for a hyperbolic system of type (1)
or (3) is given by two arbitrary functions of one variable. A more refined notion
of “explicitly solving the PDE” is that there should be explicit expressions of the
general form (5) in terms of the initial data.

The existence of formulae of the above form for the general integral surface
of a hyperbolic exterior exterior differential system is part of what constitutes the
phenomenon of integrability by the method of Darboux. For a more complete
discussion of this method, see [13, 17] and [4], but intuitively this corresponds to
the equations being solvable in the above form.

If a hyperbolic system is Darboux-integrable, then the values of a solution
at (z,y) depend only on the initial data at the two points p and ¢ where the
characteristics enamating from (z, y) meet the curve along which the initial data is
posed. This is not true for the general equation (1) where, even in the linear case,
the solution usually depends on the initial data along the whole segment between
p and ¢ on the initial curve. Whether this might be an analytic characterization of
Darboux integrability is an interesting question.

We now provide some examples of Darboux-integrable equations:
ExaMPLE: Consider a surface endowed with a Lorentzian metric (i.e., a metric
of signature (1, 1)) of constant curvature —1. A natural coordinate representation
of the equation

Oz = —k(1 — &)z, keR*

(here O denotes the Lorentzian Laplacian of the metric) is given by
zey = k(1 - k)(z —y) "2z

where the domain is taken to be the half-plane z — y > 0. This equation admits
a general solution of the form (5) exactly when £ is a positive integer, and in that
case the formula is

%2 (f(l‘) - g(y))

_ k
z=(z-y) SzF-1ggk~1 z—y

where f and g are arbitrary functions of one variable.

ExAMPLE: Equation (4) for a “maximal” time-like surface in Minkowski 3-space
is Darbon,\xx-integrable, with a formula of the form (5) with & = 2. This formula
for the general solution is the analog of the well-known Weierstrass representation
for the minimal surface equation in Euclidean 3-space.

z(s, 1) = o'(s) +3t26"(t) —t8'(t) +B(2)
y(s, 1) = B"(t) +4s%a"(s) —se/(s) +a(s)
and /
2(z, t) = sa’’(s) — o' (s) + 18" (t) — B'(2)

where « and J are arbitrary functions of one variable. (Note that, in this case,
we cannot eliminate the “characteristic” parameters s and ¢ to get a formula for z
directly as an expression in z and y and two arbitrary functions of them.)

For hyperbolic systems our assumption of non-degeneracy rules out the pos-
sibility of a “level zero” formula

u=U(a(z), B(y))
v =V(a(z), By))

(i.e., one for which no derivatives of the arbitrary functions are needed) such as
one obtains for the s = 0 classical wave system

vy =0

this being the model system when both ©; and Q, are integrable. We therefore turn
to the question of the existence of a “level one” formula, this being a representation
(5) when k = 1. It may be shown that the necessary and sufficient conditions for
such a formula are

p=p=qa=q0=0  (kp=1)=(ka-1)=ku=kn=0 (6

where the p; and ¢; are components of the torsion and the k;; are suitable com-
ponents of the curvature derived from the geometry associated to the hyperbol}c
system (cf. the Appendix). This gives in practice an algorithm to test if ahyperbolic
system has an explicit level one general solution of the form (5). Perhaps more
interestingly, it leads to the result that there are exactly two contact equivalence
classes of hyperbolic systems for which this is true.

ExaMPLE: If (6) holds together with

n=g=0,

then (cf. again the Appendix) the hyperbolic system is linear. Moreover, the
induced metric on solution surfaces has constant Gauss curvature X = 1 and
invariant F = 0 (for this terminology, see the Appendix). From this it follows
that it is locally equivalent as an exterior differential system to the system in
zyuv-space generated by
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Q= (du - ﬂy_) adz
cos(z + y)

udzx
QH=(dy— ——— _
2 ( cos(x+y)>“dy

where |z + y| < 7/2. This exterior differential system models the hyperbolic
PDE system

v
"= Cos(z + Y)
_ u
s cos(z +y)

The general solution to this system is provided by the formulas
u(z, y) = 9(y) sec(z +y) +f(z)tan(z + y) +f(=)
v(z, y) = f(=z) sec(z +y) +9(y) tan(z + y) +¢'(y)

where f and g are arbitrary functions of one variable.
If prgs # O then it can be shown that the hyperbolic exterior differential
system is equivalent to one modeling the s = 0 Liouville system

— eV
Uy =¢€

vy = e¥.

The representation (5) of a general solution is

oo (@)
a(z) + b(y)
A )
a(z) + b(y)’

Translation Invariant Hyperbolic Systems

4.1 Characteristic Completeness and Global Integral Surfaces. We will now
discuss the geometry of translation invariant, quasi-linear hyperbolic systems

uy +a(u, v)uy +b(u, v)v, =0 (1)

vy +c(u, v)uz +e(u, v)v, =0.
For such systems the natural group of equivalences to consider are classical trans-
formations which change the independent and dependent variables separately. It
will be seen that the exterior differential system (M; Q;, Q,) associated to (1) is
linear in the appropriate sense, and in this section we will use that observation
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to establish a global existence and uniqueness result for integral surfaces of the
exterior differential system. In subsequent sections we will discuss the geometry
of these surfaces as they pertain to classical solutions of (1).

Before doing this we want to comment on the initial value problem for
integral surfaces of a hyperbolic system. Initial data is given by a mapping
¢ : [0,1] = M whose image is an immersed, non-characteristic curve, where, by
non-characteristic, we mean that ¢'(t) 2€; # 0 for ¢ = 1 or 2. We consider the
unit square £ = {(s,t) € R?: 0 < s, ¢t < 1} and set A to be the diagonal in X.
The initial value problem seeks to extend the initial data ¢ to a mapping

fo:Usg =M (2

of a neighborhood Uy C Z of the diagonal, which is an integral surface of the hy-
perbolic system (M ; Q;, Q,), with the additional property that the characteristic
foliations pull-back to be the s = const and ¢ = const lines. This last requirement
removes the reparametrization ambiguity usually associated with integral surfaces
of differential systems since any diffeomorphism of the unit square fixing the
diagonal pointwise and the foliations s = const and ¢ = const must be the identity.

Now, the standard existence and uniqueness theorems for hyperbolic PDEs
imply that there is a neighborhood U of the diagonal such that the desired extension
(2) exists and is unique. We shall say that the solution is characteristically complete
in case we may take U to be the whole unit square X. That is, the solution is
characteristically complete if we are able to extend the mapping ¢ to include all
points lying on the characteristics emanating from the initial curve to the point
where they meet. Pictorially, we have the following situation (see Figure 4.1). As
stated above, the initial data, prescribed on the diagonal A, may always be extended
to give a solution surface in a neighborhood U of A. However, if an extension
could not be further extended beyond the U depicted, the two characteristic curves
drawn could not be extended until they met in U, so such a solution would be
incomplete. In fact, unless we can extend the mapping fy to the whole square Z,
this condition of characteristic completeness fails to be satisfied. The question
of existence of complete solutions with arbitrary non-characteristic initial data is
obviously a global one. We shall give a large class of hyperbolic systems for which
such complete integral surfaces exist with arbitrary initial data. By illustration we
shall also show that in some examples one may expect characteristic completeness
for some but not all initial data.

‘We now return to the system (1), which we write in vector form as
u, +a(u)u, =0 (3)

where u = *(u, v) and a(u) is a 2-by-2 matrix which has distinct real eigenvalues
A = A(u) and g = p(u) at all points under consideration. The exterior differential
system associated to (3) is given by

® =duadz—a(u)duady=0 (4)
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s

Figure 4.1

where @ is an R%-valued 2-form. Let c(u) be a 2-by-2 matrix such that

c(u)a(u)e(u)™! = A(u) = (/\ O)

0 n
Setting IT = *(#, m2) = c(u) du, the hyperbolic system (4) becomes
Madz — A(u)[Tady =0
or equivalently, in components

ma(dz — Ady) =0
maa(dz — pdy) = 0.

(5)

In the following, we shall define a notion of completeness for the PDE system
(3). We shall show that for such systems the corresponding exterior differential sys-
tem has a unique, complete smooth integral surface for arbitrary non-characteristic
initial data.

We begin by noticing that for the PDE system (3), the 1-forms 7; and
defined above are integrable in the uv-plane and hence there are locally defined
functions p = p(u, v) and ¢ = ¢(u, v) such that 7y is a multiple of dp and m; is a
multiple of dg. These functions p(u, v) and ¢(u, v) are the well-known Riemann
invariants associated with hyperbolic PDE systems.

A hyperbolic system (3) is said to be complete on a domain D in the uv-plane
if we can choose the Riemann invariants p and ¢ to be global coordinates on D
in such a way that the image under the mapping (p, ¢) : D — R? s a coordinate
box in the pg-plane. If (3) is complete on D = R?, then we simply say that (3) is
complete. We will say that non-characteristic initial data

S +— (:z:(s), y(s), u(s), v(s))
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is complete if the image of the data in the uv-plane lies in a domain D in which
the equation (3) is complete.
We can now establish the following resuit:

For any hyperbolic system (3), any complete non-characteristic initial
curve extends to a unique, smooth characteristically complete integral
surface of the associated exterior differential system. Furthermore,
the integral surface is an immersion in a neighborhood of the initial
curve.

Before proceeding to the proof of this result, we consider an example:
ExAMPLE: Recall that the Fermi-Pasta-Ulam (FPU) equation is given by

2yy — kX (25) 25 = 0, (6)

where k is a smooth positive function. This is a special case of the Monge-Ampere
equation (3) introduced in the preceeding section. The exterior differential system
corresponding to (6) is generated by

&) = duadz + duady
D, = dvadz + (k(u))2 dundy.
Integral surfaces of the system ®; = ® = 0 on which dzady # 0 are (up to an

additive constant) locally in one-to-one correspondence with solutions to the FPU
equation. Setting

7 = dv + k(u) du,
7y = dv — k(u) du,

w! =dz + k(u) dy
w? =dz — k(u) dy

and

lem/\wl, Q = T Aw?

we note that span {®;, ®,} = span {Q, Q,}. Thus we obtain an exterior
differential system of the form (5) where 7, m, are exact. In fact, letting K (u) be
an anti-derivative of the function k(u) we have

dp = dv + k(u) du = d(v + K(u))

dg = dv — k(u)du = d(v - K(u)).
From this it follows that the condition for the FPU system to be cofnpletc is that
the one-to-one mapping K : R — R should be surjective. More generally, if the

image of K is some proper subinterval (a, b) of the line (where either ¢ = —o0 or
b = oo is allowed, but not both), then initial data of the form

¢(s) = (2o(s), vo(s), wo(s), vo(s))
is complete if and only if, for all s and ¢ in the domain of ¢, we have

a < 7(K (uo(s)) + K (uo(t)) + vo(s) — vo(t)) < b
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(note that this inequality clearly holds when s and t are sufficiently close, since
the value in the middle will then be close to K (uo(s)) ).

We now turn to the proof of the above claim. Let the initial data be given
by a complete non-characteristic curve written in suitable £ypg-coordinates in the
form .

¢(s) = (120(8), yo(s), po(s), qo(s))

where 0 < s < 1. We seek a mapping f : £ — M = R? x P x @, where P and
@ are the image intervals in R of the functions pg and go respectively, of the form

(s, t) — (m(s, t), y(s, 1), p(s, t), q(s, t)) 7

and satisfying the initial conditions

z(s, 5) = zo(s), y(s, 8) = vo(s), P(s,8) =pos), 4(s, ) = qols) (8)

as well as the exterior equations

dp(s, t)ads = 0, (dz(s, t) — A(s, t) dy(s, t))ads = 0 ©)
dq(s, t)adt =0, (dz(s, t) — u(s, t) dy(s, t))adt =0
where A(s, t) = )\(p(s, t), q(s, t)) and p(s, t) = u(p(s, 1), (s, t)). In fact,
these equations imply not only that Q; and Q, pull back to zero under the mapping
(7), but also that the two linear factors of ; will each pull back to define the
characteristic foliation s = const, and similarly the linear factors of Q; will define
the curves ¢ = const.
The first set of equations in (9) above together with the initial conditions (8)
imply that
p(s, t) = po(S), Q(S, t) = QO(t)'

(Note that this does well-define p and ¢ as functions of s and ¢ since the allowable
values of (p, ) form a coordinate box in the pg-plane.) In particular, A(s, ¢) and
u(s, t) are determined from the initial data. The second set of equations in (9) are
equivalent to

z: —A(s, D)y =0,

zs —p(s,t)ys = 0.

(10)

This is a linear hyperbolic PDE system posed in the unit square £ = [0, 1} x [0, 1],
with characteristics given by the line s = const and ¢ = const and with initial data
given on the diagonal. By standard existence and uniqueness theorems there is a
unique solution z(s, t), y(s, t) to the system (10).

The condition that the initial data be non-characteristic may be easily seen
to be equivalent to (7) being an immersion along the diagonal, and hence in a
neighborhood of the diagonal. a

In the next section we will show that, under certain restrictions on the initial
data, the mapping (7) is an immersion outside a compact set in the si-plane and
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that it is everywhere an immersion for “generic” initial data. It may be that (7) is
always an immersion everywhere for all initial data but we have not been able to
establish this in general.

We now consider equations which are not complete—many interesting equa-
tions, such as those arising from gas dynamics, belong to this class. For such
equations, the above proof may still allow us to establish a global existence result
for some (but not all) initial data. We illustrate this with the following

ExaAMPLE: Consider the coupled Burgers’ equations

uy +vv, =0

(11)

vy +uty =0.

Note that this system is hyperbolic whenever uv > 0, and so in what follows we
shall restrict to the region R = {(z,y, u,v) € R*: u > 0,v > 0}. The
corresponding exterior differential system on ]Rj_ has the form

® = —duadr +vdvady =0
¥ = —dvadz +uduady = 0.

From the relation
(@ + &¥)? = 2(v — E2u)(du a dv A dz A dy)

we see that £ = £+/v/u gives the decomposable linear combinations of ® and V.
A little computation shows that (up to a multiple) these decomposables are

Qi = 3(Vudu+ v dv)a(de — Juv dy),
Q = 3(Vudu - vdv)a(dz + /uv dy).
In what follows, we shall find it convenient to introduce the following change of
variables
p= %(us/z + v3/2), g= %(ua/z _ 1)3/2)_
Now, the exterior differential system on M = {(z, y, p, ) € R*: p > |q|} is
given by
Q; = dpa(dz — (p? — ¢%)/3dy) =0,
Q; = dga(dz + (p* — ¢%)!/3 dy) =0.
Notice that this system is not complete on its domain of hyperbolicity.

We now seek solutions f : £ — M of the above hyperbolic system. As in the
proof above, we have

p(5,) = po(s), q(s,t) = qo(t). (12)

In order to have p(s,t) > |¢(s,t)| for all (s,t) € Z, the initial data must clearly
satisfy

max |go(s)| < min po(s)
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and these are necessary and sufficient restrictions on the initial data to have a
characteristically complete integral surface.

4.2 The Geometry of Global Integral Surfaces. We continue our discussion of
integral surfaces of the exterior differential system on M C R* associated to the
PDE system

uy + a(u)u, = 0. )]

As was established in the previous section we may locally write this exterior
differential system as

Q; =dpa(dz — Ady) =0

2
Q, = dga(dz — pdy) =0 @

where p and ¢ are functions of u and v for which dpadg # 0. Henceforth, we
shall assume that the system (1) above is complete and so we may choose p, ¢ to
be global coordinates on the uv-plane. In particular, A and z are then well-defined
functions of p and q.

We now consider special solution surfaces of the above exterior differential
system given by a mapping f : U — M where the domain U is an open subset of
the st-plane. These solution surfaces are characterized by the dimension of their
image under the projection to the uv-plane.

TYPE 0: These are solution surfaces S C M on which
Ty =Ty = 0 (3)

or equivalently p = const and ¢ = const. The image of such a solution surface is
thus a point in the uv-plane.

Inaregion of the st-plane where (3) is valid, z and y satisfy a linear hyperbolic
PDE system with constant coefficients (cf. equation (10) of §4.1).

TYPE 1: These solutions S C M are defined by the condition that
T1IATY = 0, (4)

and in addition are not of TYPE 0. Thus the image of a TYPE 1 solution surface
in the uv-plane is a curve. These solutions are classically known as simple waves.

Note that for simple waves, the hyperbolic system (M; 1, Q) reduces to
the system (Ny; Q) or (N,; Q) where Ny and N, are the hypersurfaces in M
defined respectively by ¢ = g¢ and p = pg. In what follows we shall have occasion
to study classical solutions of (1) which then naturally requires us to introduce
the independence 2-form Q = dzady. Now recall that the condition for genuine
non-linearity of (N4; Qa, Q) is that the common linear factor §4 of Q4 and Q
should be a contact form on N4.

From (2) above we have that

91 =de —A(pa qO) dy)
92 =dz _ﬂ(PO: q) dy:
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and hence
01adb = A, dpadzady,

O2adlOy = pg dgadzady.

This leads to the classical definition of genuine non-linearity for the PDE system
(1), namely, that it should satisfy the conditions

A #0 and py #0. (5)

This concept is intrinsic to the data (M; Q;, Q,; ) consisting of the hyperbolic
exterior differential system (M; Q;, Q) together with the independence condi-
tion Q.

TYPE 2: These are solutions on which
T a7y Z£ 0.

Clearly, the image of such a solution surface is an open subset of the uv-plane.

We now proceed to develop a “picture” of the solutions to the system (2). For
this we assume given classical initial data

z > (z, 0, up(z), vo(z)) (6)

where uo(z) and vo(x) are constant outside a compact set, say for [z| > R. We
then use coordinates

E=14(s+1) and n=1i(s-1)
in the st-plane and assume, as we may, that the initial data (6) is given by

& (5; 0, Po(f), qo(é))

where po and ¢ are constant for || > R. We also recall that

p(s, t) = p(s, 8) = po(s)
q(s, t) = q(t, t) = go(t) ™

are determined by the initial curve. This suggests we consider the following picture
in the £n-plane

s=—R §=R p, ¢ = const t=-R t=R

P, q = const P, ¢ = const
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From (7) it follows that p and ¢ are constant in regions I, ITI, V, so that the solution
there is of TYPE 0. Moreover, p is constant in region I and ¢ is constant in region
IV, so that the solution there is of TYPE 1. For fixed n = 7o > R the solution
along the £-axis

TypeO | Typel | TypeO | Typel |
I i I I

Type O

Figure 4.3

is of awave that is alternately constant and simple with the simple wave components
separating as 7 increases. We also see from the above picture that the boundary of
aregion where we have a solution of TYPE O consists of characteristic curves and
in the adjacent region the solution is of TYPE 1. Furthermore, outside of region
VI and its mirror image in the half-plane < 0, the mapping giving the complete
integral surface with initial data (6) is an immersion.
We shall use the above picture to deduce the following well-known fact (see

[19]):

If the PDE system (1) is genuinely non-linear then any classical

solution w(z, y) with non-constant compactly supported initial data

will develop a singularity in finite time.
Proof: The proof is by contradiction. Setting

w! = dx(Ex 77) —’\(E,T]) dy(&) '7)’
w? = dz (€, n) —pu(¢,n) dy(¢, n),

where A(€, 1), p(€, n) are given with the non-linearity property (5), we will show
that Q = w!aw? vanishes somewhere in the £7-plane.

Assuming this is not the case there will exist smooth functions p(¢, ) and
o (&, n) such that

o —puwl=0 and 1 —ow?=0.

The exterior derivative of the first of these equations gives
(A —w)dp+p(App + Ag0)w? = Omodw!.

Recall that for genuinely non-linear systems A, # 0. Now, because we want to
illustrate the geometric approach rather than derive the most general result, we
will assume that A, is bounded away from zero, say A, > Ao > 0.

Note that for a fixed s = sq characteristic line we may assume that the
parametrization is chosen so that w? = (u — A) dt. Along this characteristic we
then have

pi = p(App + Ag0). (8)
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By assumption the initial data vanishes outside a compact set, say [¢| > R.
Thus we have

p(§,0)=0
" 0):0} for [¢| > R.
Now notice that along the initial curve 7 = 0 we have
p(€, 0) = a(§)pe(§, 0) and (&, 0) = B(€)ee(¢, 0)  (9)

where a(£) and S(€) are nowhere vanishing functions. Thus we have that on the
set || > R

p(€, 0) = o(£, 0) = 0.

Pictorially we have Figure 4.4. From equation (8), we have that p = 0 along
s = const characteristics that begin to the right of £ = R. And by assumption
there will be a point P on the line n = 0 where p¢(P, 0) vanishes, and changes
sign as we cross from one side of P to the other. Again by (8) p will vanish along
the characteristic represented by the dashed line, while we may assume that p is
positive at @. Finally, along the characteristic emanating from Q we will have
o = 0 and hence along this characteristic equation (8) gives

pr = App? > dop?
with
>0 and plg >0

from which we infer that p blows up in finite time. a
Recall that for a complete hyperbolic system (1), smooth initial data

S$ = (s; 0) uO(s)’ ‘Uo(s))

defined along the z-axis extends to a unique, smooth complete integral surface
given by
fiRG )R

Figure 4.4
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where ]R%s’,) denotes the st-plane. Let us consider the mapping
.2
™. R(s,t) — R%ﬁc,y) (10)

where 7 is the composition of f with the projection onto the zy-plane. By the
above result we see that for compactly supported initial data the differential of 7
must drop rank somewhere. In fact, we have the relation (cf. equation (10) of
84.1)

s It
det =(u—-2A
e (y, yt) (1 = N)ys

which shows that the curve where #, drops rank is given by

ysyr = 0.

Thus it has two “branches”, one where y, = 0 (and thus z; = 0) and the
other y; = 0 (and thus z; = 0). These branches intersect at a point where
z; = x; = ys = ¥ = 0, which is a cusp for the mapping 7. Along the branch
ys = 0, y+ # Othekernel of 7, is spanned by 9;, i.¢., itis a characteristic direction.

We now address the question of whether the mapping (10) is surjective; i.e.,
does our construction give a global albeit “multi-valued” solution to (1)? In the
following we shall show that

If the initial data is constant outside of a compact set, then the mapping
(10) is proper. In particular, it is surjective.

Proof: Explicitly, the mapping (10) is given by
(s, t) = (2(s, t), y(s, t))

where z(s, t) and y(s, t) satisfy the linear PDE (10) of the preceding section.
To show that 7 is proper we need to understand the behavior of the characteristic
curves, which are the images of the straight lines parallel to the coordinate axes
in the st-plane. Thus we consider Figure 4.5. The characteristic curves in the
zy-plane are the integral curves of

dz —A(p, ¢)dy =0

dz —pu(p, ¢)dy = 0.

Recall that p = p(s, t) = p(s) and ¢ = ¢(s, t) = ¢(t) by the argument in the
preceding section. It follows that

p=const inregionsI, III, VandII,
g = const inregions I, III, Vand IV.

Thus, the characteristic curves in the images of regions I, IIl and V are two families
of parallel lines.
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We will now examine what happens to the images of the lines s = s¢ as s
moves from R to —R. Inregion IV, ¢ is a constant g and along the dotted vertical
line p = p(sp) is also constant. Thus the image of the ¢ < — R part of the dotted
line in region IV will be a line in the zy-plane since it satisfies

dz — A(p(s0), q0)dy = 0.

As so moves from right to left from R to — R these lines will not be parallel but
will have slope A(p(so), go) that changes continuously for —R < so < R. (Thus
in the zy-plane they may focus, causing folds for 7 in region IV). However, we
see from this picture that the mapping will be proper in region IV as s tends to co.
Similar arguments apply to the other region IV and to the two regions II. From
this we may conclude that the mapping = : ]R%S‘t) — ]R%x, v) is proper. O

4.3 The Riemann Problem for Hyperbolic Exterior Differential Systems. In §2
we have considered the geometry associated to the non-linear, scalar conservation
law .
' uy + f(u)uy =0 ()
where the non-linearity is expressed by the condition f”(u) # 0. Setting
® = dun(dz — f'(u) dy) = d¢ for some 1-form ¢ = u dz — f(u) dy, the associ-
ated exterior differential system is given by ® = O on the manifold
M =R} = {(z,y, u) : y > 0}. Initial data given by (z, 0, up(z)) where
ug(z) is smooth and constant for |z| > R gives rise to an initial curve v C M
which then extends to a unique, smooth global integral surface S C M such that
the projection

m:S - RL ={(z,9):y >0} (2)
is proper. (Here global means that S is characteristically complete in the sense
that the characteristic curves are complete geodesics in the intrinsic geometry




Toward a Geometry of Differential Equations

associated to (1).) Furthermore, it is well known that there is a unique, global
shock solution u(z, y) of (1) associated to the above initial data, and in §2 we gave
heuristic reasoning to the effect that u(z, y) arises by taking a suitable (possibly
discontinuous) cross section

(zx y) and (xa Y, U(-’”; y)) €S

of the projection (2).
We now turn to a hyperbolic system of conservation laws

Uy 0z (f(u, v)) =0
{vy +05 (g(u, v)) =0 ®)

which we also write as
uy + 9 (F(u)) =0

where u = *(u, v) and £ = *(f, g). This gives rise to the hyperbolic exterior
differential system ® = ¥ = 0on M = R4 = {(z, y, u, v) : y > 0} where
® = d¢ and ¥ = dy) for 1-forms ¢, 3 defined by

{¢ = udz —f(u,v) dy

Y =vde —g(u,v)dy. “)

With an appropriate assumption on the completeness of (3) we shall show that
smooth initial data
z > (z, 0, ug(z))

satisfying ug(z) = const for || > R gives a unique, smoothly parametrized
global integral surface S C M such that the projection

7:S =Ry ={(z,9): 920} (5)

is proper. (Here, global means that S should be characteristically complete as
explained above.)

In PDE theory (see [20] for a general reference and [14] for recent develop-
ments) it is proved that if (3) is genuinely non-linear and the initial data has small
mean oscillation, then there is a unique shock solution u(z, y) to (3) with the given
initial data.

A natural question to ask is whether this shock solution arises by taking a
suitable cross-section of (5)? The situation is much more subtle than in the scalar
case, and as we shall see when we discuss the Riemann problem below the answer
appears to be no in general. However, for a special class of hyperbolic systems
which we shall describe in the following, this construction is indeed possible.

Briefly, the problem is that the Rankine-Hugonoit conditions for a weak
solution—the analog of the jump condition (14) in §2—are now the pair of equa-

tions
l9(u, v)] = sv]. (6)

[f(u, )] = s[u] and
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On a solution surface S, this is an over-determined set of equations for the shock
speed s. We shall see that, at least for the Riemann problem, these conditions
can be satisfied on S only when the defining functions f(u, v) and g(u, v) of the
hyperbolic system (3) satisfy a pair of second-order PDEs (to be derived below).
We shall call such hyperbolic systems of conservation laws special.

We now proceed to study the analogue for exterior differential systems of the
classical Riemann problem for (1) and (3). Recall that this is the PDE initial value
problem for the initial data

wo(z) = {u_ for z < 0, (7a)
Ug forz > 0,

in the case of equation (1) and

_ f 0,
wo(a) = {u orz < 0, (7h)
uy forz > 0,

in the case of equation (3).

Notice that the initial data (7) gives a disconnected curve 7o in M. In the
following we shall show how < may be uniquely completed to a connected,
continuous and piecewise smooth curve v such that there is a unique, global
weak solution surface S to the corresponding exterior differential system with
the additional property that S consists only of TYPE O or TYPE 1 solutions in
the sense of the preceeding section. (The reason that we restrict S to consists of
TyPE 0 and TYPE 1 solutions is that the graph of the classical shock solutions
have this property. Furthermore, this is a natural geometric condition to impose on
a solution surface.) In the scalar case the shock solution to the Riemann problem
arises as a suitable cross-section of

T:8 = R:,

but this is not in general true for (3). As stated above, this will be valid only when
the system (3) is special.
We begin with a brief discussion of the non-linear scalar conservation law (1).

In the following we shall see that there are two basic cases:
(i) u~ > uy — breaking waves; (ii) u~ < u4 — rarefaction waves.

We will show that “upstairs” on the geometric solution surface S these two cases
are essentially the same, which is not the case “downstairs” for the classical shock

solution u(z, y).
We prescribed the initial data by a mapping

s — 7(s) = (z(s), 0, uo(s)), seR
as follows: For a < b withb — a = |f'(u4+) — f'(u-)| we set

(s) = (s—a,0,u.) fors<a
Y= (s=b,0,uy) fors>b




46

Toward a Geometry of Differential Equations

Figure 4.6

while for a < s < b, the data () is defined by

z(s)=0 and £ (uo(s)) = %s

where up(a) = u_ and up(b) = u4. Here, =+ is the sign of uy — u_ (thus + for
rarefraction and — for breaking waves). The picture is as follows (see Figure 4.6).

From the relation
£ (uo(s)) up(s) = £1

together with the non-linearity assumption f" > 0, we see that the sign is deter-
mined by whether u(s) is increasing or decreasing on the vertical segment.
The characteristic vector field is

X =08, + f(u) 8

and we define S to be the image under the mapping I of R2 = {(s,t) : t > 0}
obtained by flowing v along the integral curves of X. Explicitly

T(s,t) = (2(s) + £ (uo(s)), t, va(s))- (8)

This is a continuous, piecewise smooth mapping with (finite) jumps in the differ-
ential I', arising from

£ (uo(s)) uo(s) = £1,

which gives the jump at s = a

a<s<b,

1
= ——
[u()] - if”(u_)’
and similarly at s = . We note thatin a < s < b we have

uo(s) = (f)7 (%)

according to whether u_ < uy or u_ > uy. Thus, upstairs a shock wave looks
like a “backwards” rarefaction wave.

B L o
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The mapping (8) is a weak solution to the exterior differential system
dp=0 9)

in the following sense: First, I™*(y) is a continuous 1-form in R?,_. Secondly, for
any function o with compact support in R3 = {(z, y, u) : y > 0}, T*(a) is a
compactly supported piecewise smooth functionin R% = {(s, t): ¢ > 0} and
thus the equation

/dr“(a)Ar“(go) =0 (10)

makes sense, and is satisfied for all «.

For Sp = S — 7 the mapping 7 : Sp — R2 = {(z, y) : y > 0} is one-to-one
in the rarefraction case, while in the shock case the image in the zy-plane of the
regiona < s < b, t > 0 is covered three times by the mapping 7. The entropy
condition (see §2) tells us that along the line

z _ flu)— fluy)
Y

U_ —uyg

we should jump from the top to the bottom sheet of 7~ !(z, y) to obtain the shock
solution.

Turning to the Riemann problem for the exterior differential system arising
from (3), it turns out that through each point of the uv-plane there are two pairs of
curves, one arising from the level sets of Riemann invariants and the other arising
from the solution curves to the jump conditions (6). In order to understand the
Riemann problems “upstairs” and “downstairs”, as well as their relationship, we
shall need to understand the local geometry of these curves and how they relate to
each other.

Recall that a Riemann invariant is a function r(u, v) that is constant on one
of the families of characteristics on solutions (u(z, y), v(z, y)) of 3). The
characteristics are integral curves of

)dz - Ady=0 or (ii)dz — pdy = 0.
We shall denote by ry, r, the Riemann invariants corresponding to (i) and (ii)
respectively.

Next, we observe that the form of the equation (3) remains invariarnt under the
affine linear transformation

il = agu+ vp (11)

where ag is an invertible 2-by-2 matrix and vy is a vector. Thus, we may intrin-
sically think of (u, v) as coordinates in an affine vector space. For each point u
in the affine space we denote by ey (u), e, (u) eigenvectors of £'(u) corresponding
to A(u), #(u) respectively. We may identify the tangent space at each point u
with the affine space itself and so in this way we may think of e, , e, as a pair of
direction fields.
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Lemma 1: The level sets vy = const and r,, = const are the integral curves of
e, and e, respectively.
Proof: We recall that a simple wave for (3) is a solution u(z, y) whose image in
the uv-plane is a 1-dimensional curve. We shall show that the level sets of simple
waves are also level sets of Riemann invariants as well as integral curves of the
above direction fields. '

For a simple wave the level sets u(z, y) = const are a family of curves giving
a foliation (z, y) = const in an open set in the zy-plane. This implies that
u = u(¢), a function of 1-variable. The PDE (3) gives

(& + &' (w)u' =0

which means that A = —¢, /. is an eigenvalue of f/(u) with eigenvector ey = u’.
Thus we have

D& +A(u(©))é = 0;

Rewriting equation (i) as

(ll) UI(E) =€) (u(f)) .

(8y + A(u())d:)¢ =0
and using the identity
(de—Ady, 8, +18;)=0

we see that the curve £ — u() in the uv-plane is a level set of the Riemann
invariant ry.
Now, from equation (ii) we have

0 = drx(u(€)) = (dra, er) (u(8))

and so (dry, ex) = 0 as require. o

To study the geometry of the various curves in a neighborhood of a point
ug, we make an affine transformation (11) so that uy = (0) is the origin and
ex(0) = 8y, e,(0) = 8,. Then we have the series expansions

f(U,’U) = dou +%fuuu2 +fuvu'U +%fvvvz +O(3) (12)
g(u’ ‘U) = Hov +%guuu2 +Juyuv +%9w112 +0(3)

where O(k) denotes terms of order k.

Lemma 2: In a neighborhood of the originu = (0), we have

)‘(U, ‘U) = Ao +fuutt +fuov +0(2), (l)
u(u, v) = po +guvu? +guvtt +0(2).

Futhermore, we may choose the eigenvectors and Riemann invariants such that

e)‘(l.l, V) =08, +(/\0 - uo)"l(guuu +guvv)6v +0(2),

€u (1, ¥) = 8, +(1t0 — 20)" (foot +Fuvtt)s +O(2), (i)

A1
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and

At v) = v —(Xo = #0) " (39unt® + guouv + 2guuv?) +O(3), (i)
r#(u; v) =u _(/10 - /\O)—l(%fuuu2 + fuyuv + %fvvvz) +0(3).
We remark that e, e, and ry, r, are not unique—i.e., the eigenvectors are
defined up to a non-zero factor while any non-constant function of the Riemann in-
variants will still be a Riemann invariant. The above formula should be interpreted
as giving expressions for representatives of equivalence classes.
Proof: The linear terms in A and  are determined ftom the equations

I+ g A 0) l—a g = AO"i‘fuuu'l‘fuvv Suovt+fouv
04 146 0 u -y 1-6 Juutttguyv #0+FuvU+gyuv
where @, 3, v, § are homogeneous linear forms in u, v. Expanding this out gives
@).
For (ii) we write ey = *(1, ) = 8y + n 8, where 7 is homogeneous and
linear in u, v, and then we solve for 5 in

Ao+ fuutt+ fuyv Juvtutfouv 1 I
=(A uu
( JuutitGuyv BotGuyUtgyyv n (0+f u+fuu'U) n
to obtain

1= (X0 = #0)™ (uutt + guyv) + OQ2).

A similar argument gives the expression for e,,.
Finally, (iii)follows from the previous lemma and

(dra, &) =0 modO(2)
(dru, e,) =0 mod O(2).

a

From equation (iii) above we see that the level sets of the Riemann invariants,
passing through the origin, are given respectively by

v = 5(%0 ~ o) guuti? + O(3)  (149)
and
u= %(Ho - /\0)_1fvuv2 + O@3). (14b)

We now consider the solution curves of the jump equations (6) where we
assume (without loss of generality) that the starting point is again u = (0). These
equations have the form

(s — Xo)u = P(u, v)
(s — po)v = Q(u, v)

(15)
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where
P(u, v) = L fuuti? + fuyuv + 3 fouv? +003)
Q(u, v) = Sguut® + guouv + 1g9u0v* +0(3).

Eliminating s gives
(o — po)uv + vP —u@ =0
This equation has two smooth branches, with tangent vectors 8, and 8,, given

respectively by
v= %(AO - ﬁ‘O)—_lguuu2 +0(3) (163)

and
u = L(po = Xo)~ fuuv® + O(3). (16b)

Comparing with (14) we see that:

Through each point of the uv-plane, the solutions with s # 0 of the
jump equations (6) form a pair of curves which osculate to second,
but not in general to third, order to the pair of level curves of the
Riemann invariants.

Clearly the level sets of the Riemann invariants ) and r, define a pair of '

local foliations, henceforth denoted by px and py respectively, of the uv-plane.
Somewhat more subtle s the fact that the two families of jump curves, now denoted
by 65 and 8, need not necessarily form a pair of local foliations.

The problem is that the relation defined by, say, the 8 curves is symmetric
but not necessarily transitive. Consider two nearby points P, Q in the uv-plane.
We say that Q is A-related to P in case Q lies on the A-jump curve of P, denoted
by 5x(P). Since the jump equation (6) is symmetric, it is clear that P is also
A-related to Q, i.e., P lies on the A-jump curve of @, 6x(Q), butin general \(Q)
will be different from 6x(P) (see Figure 4.7). For the point R as depicted above
we have that Q and R are A-related but in general P and R will not be A-related.
This situation is clarified by the following

Lemma3: The two families of jump curves forma pair of local foliations if and
only if they coincide with the two Riemann foliations, and furthermore are local
foliations of the uv-plane by straight lines.

An obvious case when the § and p foliations coincide is when the system (3)
uncouples, in the sense that there is an affine linear change of variables such that
(3) becomes

Uy +3,(f(u)) =0
vy +3x(g(u)) =0.

In this case the §-curves are two families of parallel lines. In general, however,
the conditions of the lemma may be satisfied by two families of non-parallel lines
(although, clearly, if the foliations are global in the uv-plane then uncoupling will
occur).

et

T
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5 (P)

Figure 4.7

Proof: For v close to u we consider the locus X defined by the equations
f(v) —f(u) = s(v — u)
in (u, v, 5) € R? x R? x R. From the previous lemma, we may infer that
T =T UE\UZ,
where Za, Z, £, are smooth 3-manifolds with
T = {(u, v, 5) € R¥: vis A-related tou},
2, = {(u, v, 5) €R’: v is p-related to u},

and
Sa={(u,v,s) ER’>: u=wandv =w}.

Thus, (u, v, ) € I means that v € &x(u) and thatif v # u then s is uniquely
determined by the jump equations above. We note that, as v approaches u along
&x(u), s approaches A(u). This suggests that we take (u, s) as local coordinates
on X and use s — A(u) as parameter along 6)(u). We then write the Taylor’s
series for v along 6 (u) as

va(u, s) = u+ (s — A(u))ex(u) + 0((s = A(w))?).
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‘We now determine the conditions that the § , -curves define a transitive relation.
Thus suppose that vi = v(u, r) and v, = v(u, s) are A-related to u, i.e.,

f(v,\(u, r)) ~—f(u) = r(v)\(u, r) — u)
f(va(u, s)) — f(u) = s(va(u, s) — u).

Transitivity now implies that v, is A-related to v and so there a ¢ = ¢5(u, s, 1)
such that

f(va(u, r)) = f(va(u, 5)) =ta(u, s, r)(valu, ) — va(y, s)).

This equation uniquely determinest(u, s, r) asacontinuous function of (u, s, r)
for s and r distinct and close to A(u). Moreover, setting tx(u, s, s) = A(va(u, s))
defines ty(u, s, r) continuously for all (u, s, ) with s and 7 close to A(u).
The above equations give
r{va(u, r) —u) — s(va(u, s) —u) =tr(u, s, r){valu, r) — va(u, s)).
Now, fix u and consider the following curve in the uv-plane

v(s) = valu, ) —u.

The previous equation now gives

0= (ry(r) = s7(s)) A (v(r) = 7(s)) = (s — r) ¥(r) A¥(s)-

Thus ~y(s) lies on a line through the origin, as was to be shown.
Conversely, if the §-curves are straight lines then transitivity is clear. O.

Definition: We will say that (3) is a special hyperbolic system of conservation
laws in case the level sets of the Riemann invariants are straight lines.

‘We note that this is an intrinsic condition on a hyperbolic system of conser-
vation laws (since only affine linear transformations of the wv-plane will preserve
the form of (3)). We now proceed to describe all such special systems.

For an eigen-direction e(u, v) of f'(u) we define

€ = Vee.
Then é is well-defined modulo e and

.

ene=0

is the condition that the integral curves of e be straight lines. This equation is a
second-order condition on f(u) at each point of the uv-plane—taking into account
both eigen-directions, we see that special systems of hyperbolic conservation laws
are given by (3) with f(u) = *(f(u, v), g(u, v)) satisfying a pair of second-order
PDEs. We may suspect that locally the solutions to this system depend on 4

- i e o N ISR o " »
ot e s o R A5 R
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arbitrary functions of 1 variable. We will see that this is indeed the case by the
following geometric construction.

Each point ug has a neighborhood consisting of a quadrilateral made up of
lines in the two foliations. By an affine transformation we may assume that two
edges of the quadrilateral are the « and v axes and that the A and y foliations are
described by lines of the form

OSP<P0, O!(O):O,
OSQ<QO, 18(0)20)

u = a(p)v +p,
v = Blgu+yg,

respectively. We may solve for u and v to obtain

u\ _ -1 {p+qo (P))
=(1l-a .
(v> (1= a@(@) <q+pﬂ(q)
As long as a(p)B(g) < 1 this gives a valid formula and furthermore, if
(14¢/(p)v) (145’ (g)u) # 0it will be smoothly solvable for p and q as functions

of u and v.
Now, we can construct another map to a fi¥-plane by considering the equations

which solves to give

(&) = 0 -otmm)™ (58 50t

It is not hard to see that, as long as ¢ and % satisfy an open condition, the induced
mapping f(u, v) = (4, ©) will be hyperbolic and genuinely non-linear. Moreover,
this mapping carries each p-line to a p-line of the same slope and each g-line to a
g-line of the same slope. Thus, it has the desired properties, and consequently, the
solutions to our problem depend on four functions of one variable.

Note that if o and § are not constant, this system will not uncouple.

‘We now return to our general discussion where the é and p curves osculate to
second order but need not coincide. Assuming that (3) is genuinely non-linear we
shall show that each of the é and p curves has an orientation. These orientations
will be constructed from the entropy conditions used in the construction of shock
solutions to the Riemann problem.

Recall that the conditions for genuine non-linearity are

(du, ex) #0.

From Lemma 2 we have that fy,gyy 7 0. For definiteness we will assume that

(d), ex) #0 and

fuu >0 and vy > 0.
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Now, a shock solution u(z, y) to (3) is given for y > 0 by (see [20])

u_
i u=
uy

In addition, one of the following entropy conditions

forz/y < s,
forz/y > s.

s < A(u-) and Auy) < s < p(ug)

or

pluy) <s and Alus) < s < p(us)

must be satisfied. A shock solution satisfying the first set of entropy conditions
above is called a 1-shock while a solution satisfying the second set of conditions
is called a 2-shock.

Now, let us set u_ = (0) and assume that uy is in a neighborhood of the
origin. The jump conditions specify that u,. must lie on the 83 (0) or 6, (0) curve.
We shall show that the condition for a 1-shock solution is that

uy € 65(0) = {(u, p(u)) € 62(0) : u < 0}.
Proof: Solving for s in (15) along the arc 6, (0) gives
5= Ao + 3 fuutt + O(2).
The conditions for a 1-shock are
Xo+ 3 fuut +0(2) < Ao
and
Ao+ 3 fuutt + O0Q) < Xo + 3 fuutt + OQ2) < o+ 39uvtt + O(Q2)

and these are satisfied only for u < 0, ju| < €. Similar calculations show that the
conditions for a 2-shock cannot be satisfied anywhere along 6, (0). O

The orientation on 6) and 6, is now clear: The positive direction is from 65
to 6%, and similarly for §,. Since the px, p, curves are everywhere tangent to the
6, 6, curves, the py, p, curves also inherit an orientation.

We are now ready to proceed with the construction of the initial curve ¥
upstairs to show the existence of a unique “weak” integral surface S emanating
from v, and to contrast S with the graph of the classical shock solution to the
Riemann problem.

Let us assume that the initial data u_ and u, for the Riemann problem (7b)
is sufficiently close so that u_ and uy are related as in Figure 4.8. We prescribed

the initial data by a mapping

s+ () = (z(s), 0, uo(s)), seR
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v U4

Pu

Px

e ¥

Figure 4.8

as follows: For an interval [a, ¢] C R to be determined below, we set

(s—a,0,u_) fors<a
7(s) =
(s—¢0,uy) fors>ec
and furthermore we set
z(s) =0, ug(s) € pa, for s € [a, b],
and
z(s) =0, uo(s) € py, for's € [b, ¢].

Pictorially we have Figure 4.9, where the uv-plane lies over £ = 0. The speed
at which uo(s) transverses py and p,, is specified in the following. Before doing
so0, we notice that the condition of genuine non-linearity implies that A and u are
strictly monotone functions on py and p, respectively. In what follows, we shall
asume that A and p are increasing functions along p and p,, (a similar construction
as below would work for the other cases as well).

For £ in the interval with endpoints A(u_), A(@) we solve the ODE

d .

d—é-u,\(f) =ex(ur(f)) with  uy(Au-)) =u_, ua(M(@)) =@
For 7 in the interval with endpoints u(a), g(u4) we solve the ODE

-j—nu,,(n) = ey (uu(n)) with  u,(p(uy)) = uy, uu(p(@d)) = a
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Figure 4.9

Figure 4.10

We now proceed to construct a mapping of R2 = {(s, ) : s—¢ > 0} into M
which will be the unique piecewise C! integral surface S of the exterior differential
system associated to (3) consisting only of TYPE 0 and TYPE 1 solutions. We
begin by dividing ]R?F into 5 regions as in Figure 4.10. The mapping for regions I
and V are given respectively by

(5, )= (AM(u)t +5—q, t, u-),

R

S g
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and
(s, ) = (u(ay)t+s—c,t,uy).

Thus the solution in each of these regions is of TYPE 0.

We now consider region II. As mentioned above, we are assuming that A(u)
is increasing along p) as we pass from u_ to @i. Now we set a = A(u_) and
b = A(@). Along the lines s = ¢, the mapping is given by

(s, 1) — (/\(u)‘(s))t, i, uA(s))

Le., the lines s = ¢ map to the zy-plane to the fan of lines with z/y-slopes
increasing from A(u-) to A(@). Symmetrically, region IV is mapped into M
using the lines ¢ = 7 in place of s = ¢, and where the fan in the zy-plane consists
of lines with slopes running between x(i) and p(uy). The solution in each of
these region is of TYPE 1.

Finally, the boundary of region III is mapped into M as indicated in Figure
4.12. Now, let T' be the unique linear mapping of the st-plane to the zy-plane
taking 9; to 7‘5(—63 + 8,) and &, to 715(8_., + 8y). Inregion III, we set

(s, 1) (T(s, t), ).

Clearly, the solution in this region is of TYPE 0.

It is clear that S is the image of a continuous, piecewise C'! mapping. It is
also clear that it is a solution surface, in the usual sense, to the exterior differential
system @ = ¥ = 0 in each region. Somewhat less clear is that accross the

zfy = Au-) zfy = A(@)

Figure 4.11




Toward a Geometry of Differential Equations

zfy=\(d) withu=1 z/y = p(d) withu=1a

Figure 4.12

Figure 4.13

boundaries it is a weak solution to dp = di = 0. But by our construction the
calculation here is essentially the same as in the scalar case.

It remains to compare S with the graph of the classical shock solutionu(z, y).
Recall that in a neighborhood of the origin in the uv-plane we have Figure 4.13.
These curves are of class C? but not generally of class C? at the origin. Without
loss of generality we set u_ = (0), and for u, lying in each of regions A, B, C,
D, the solution u(z, y) consists respectively of a 1-shock followed by a 2-shock,
a l-rarefaction wave followed by a 2-shock, a 1-rarefaction wave followed by a
2-rarefaction wave, and a 1-shock followed by a 2-rarefaction wave. For example,
if uy lies in region A, then there is a unique 1 as depicted above, and the picture
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z/y= A(u-) zfy = p(uy)

Figure 4.14

of the shock solution u(z, y) is shown in Figure 4.14.

In general p; will not coincide with 65, in which case @ # @ and so the
graph of u(z, y) will in general not lie on the geometric surface S. However, as
we have seen, an exception occurs in case (3) is a special hyperbolic system of
conservation laws. For such systems we have the following result:

For the Riemann problem associated to a special hyperbolic system of
conservation laws, the shock solution arises by taking a cross-section
of the geometric solution.

For smooth initial data with suitable bounds on the oscillation there is the Glimm
scheme [16] leading to a shock solution. Since this scheme is based on iteratively
solving Riemann problems one may suspect that here also the shock solution
u(z, y) arise by taking a cross-section of the geometric solution. In this case the
singularities of u(z, y) would reflect the singularities of the map. In particular,
u(z, y) would be piecewise smooth if the initial data is piecewise smooth.

In summary, for Riemann problems we have the following results:

(1) For special hyperbolic systems of conservation laws, the geometric solution
captures the shock solution,

(i) For non-special systems, we must “cut” the geometric solution along suit-
able break curves and glue in other pieces of integral surfaces to obtain a
surface upstairs that captures the shock solution.

One may reasonably conjecture that both of these statements remains true for
arbitrary smooth compactly supported initial data.
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Appendix: The Equivalence Problem

In the preceeding sections we have made extensive use of the geometry associated
to a number of differential equations to deduce information about the behavior of
their solutions. In this appendix we shall explain how to associate a geometry to
each of these equations. The main tool is E. Cartan’s theory of G-structures—
commonly known in the literature as the Method of Equivalence. Aside from
Cartan’s own exposition [8], there are several other sources for this material,
notably Chern [11], Gardner [15], and Bryant-Griffiths /3], which the reader may
consult for more examples and information.

A.1 The equivalence problem for second-order ODE. We seek to attach an intrinsic
geometry to a second-order ordinary differential equation of the form

d? d
d—;;=f(m,y, ;,-g-) (1)

Thinking of z and y as local coordinates on a surface S, the solutions of
equation (1) form a 2-parameter family X of curves on S in the domain of the
coordinates z and y.

Conversely, suppose that we are given a surface S together with a 2-parameter
family X of curves on S with the property that, through each point p of S, the curves
in X which pass through p form a smooth curve Z, C X smoothly parametrized by
the assignment C +— T,C € P(T,S). Such a family X is called a path geometry
on S. Two path geometries, X, on S; and X, on 53, are to be regarded as equivalent
if there exists a diffeomorphism ¢ : S; — Sy which carries the curves of X; onto
the curves of %,.

In any local coordinate system (z,y): U — R? on an open set U C S, the
curves of a path geometry X are the solutions of a differential equation of the
form (1). We say that two such equations are equivalent if they induce equivalent
path geometries on their domains of definition.

Given a path geometry Z on .S, we can define an incidence correspondence

M={(pC)eSxZ|peC}.

By hypothesis, the assignment (p, C) +— T, C defined for all (p, C) € M induces
a smooth embedding of M as a subset of IP(T'S), the projectivized tangent bundle
of S. For all intents and purposes, we may therefore regard M as an open subset
of P(T'S), which we do from now on.

As we remarked in §1, this picture is symmetric with respect to interchanging
the roles of S and X, since, for each fixed p, the set of curves in £ which contain p
is itself a curve X, in Z. Thus, S defines a path geometry on X which is called
the dual path geometry, with a corresponding local representation as an ordinary
differential equation called the dual equation to (1).

Now, for a fixed C' € X, as p varies on C, the assignment p — T¢ZX, then
immerses C as a curve into the 1-dimensional projective space P(T¢Z). Thus,
every curve in a path geometry inherits a canonical projective structure and hence

¢

T
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a parameter well-defined up to a linear fractional change of parameter. Already,
one can see that there is quite a bit of local and global geometry attached to a
second order ODE. One could say, for example, that an equation of the form (1)
(or more generally, a path geometry) is projectively complete if the canonical
projective structure on its curves is projectively complete. (Note that projective
completeness of a projective structure on a curve does not imply that the curve is
closed.)
As we discussed in §1, this leads to the double fibration

where A(p, C) = p and p(p, C) = C and each of X and p is a smooth submer-
sion. It follows that M can be covered by open sets U on which there exist
coframings (g, 8, w) so that on U, we have

ker\, = {a, 8}* and ker pu = {6, w}t. (2)

We say that a coframing (a, 8, w) is 0-adapted to the double fibration if the
relations in (2) are satisfied. Note that the 1-form § is well-defined up to a scalar
multiple and that, as explained in §1, it is a contact form, i.e., §adf is nowhere
vanishing.

Now, any other 0-adapted coframing in U is seen to be of the form

-1

o ap b O [41
0 = 0 as 0 _Q (3)
w 0 b a w

where the “transition matrix” takes values in the obvious 5-dimensional sub-
group Gy of GL(3,R). Thus the local 0-adapted coframings of the double fibra-
tion are the local sections of a principal Gy-subbundle B, — M of the bundle of
general coframes of M. In other words, Bg, is a Go-structure on M.

It is important to note that the induced Gy-structure on M C P(T'S) can be
computed without knowing the solutions of (1) in advance. For example, using
coordinates z, y, and p (= dy/dz) on R? C P(TR?), we can use

dz
dy — pdz
dp— f(z,y,p) dx

€ IR
1l

as a 0-adapted coframing on M, even though we may not know explicit functions o
and 7 on M whose differentials have the same span as {f,w}, i.e., a pair of
independent first integrals of (1). Indeed, one of the reasons for studying the
Go-structure Bg, in the first place is to find ways to compute such functions
oand T.
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Following Cartan, we now apply the equivalence method to this Gp-structure
to compute its invariants. Differentiating (3), and collecting terms as much as
possible, we see that there exist 1-forms ¢y, 2, 3, 1, and g and a function ¢
on Bg, so that

o Y1 m O a 0
dl 0 ]==]10 3 0 |Aal0]|+]tarw
w 0 u ¢ w 0

In the terminology of the equivalence method, the go-valued 1-form

1m0
0 ¢3 O
0 pwm ¢

is called the pseudo-connection matrix and the term £ ceaw constitutes the torsion
of the structure. The pseudo-connection 1-forms are not uniquely determined by
the structure equation and we will return to this point below.

Now, the contact condition §adf # 0 implies that ¢ # 0, which suggests that

we may restrict to coframings which satisfy ¢ = 1. Thus, we say that a 0-adapted '

local coframing (@, 8, w) is 1-adapted if, in addition to being 0-adapted, it satisfies 4
df = aaw mod#@. The local coframings which are 1-adapted define a G-structure A

on M which is a sub-structure of the given Go-structure. Its structure group is the #

4-dimensional subgroup

ai b1 0
G = 0 aa, O a;,a2£0 3 CGy. .
0 bz aj =-,‘,.
The structure equation of Bg, now assumes the form
« L E, 0 o 0 .
dlé]=-1]0 ete, 0 |albd]+]amnw

for some 1-forms @1 Por By and B, which are, however, not uniquely determined
by this equation.

Itis easy to see that if 1, 7, p11, and ps are any 1-forms on Bg, which satisfy

o ®1 M1 0 a 0
d{o0)==]10 oi+p2 0 |al|0]|+]| arw], 4)
w 0 M 2 w 0

then there exist functions p;, p2, q1, and ¢ so that

pL=9 +nb,
p2=9p,+pd,

m=pt+al+pa,
B2 =y + 020+ prw,

and
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and conversely that, for any such functions on Bg, the 1-forms defined by the
above equations satisfy (4). For such a set of 1-forms satisfying (4), we will say
that the collection of 1-forms (e, 8, w; @1, ¥, p1, #2) define a (1, 1)-adapted
coframing of the 7-manifold Bg, . Itis clear that the (1, 1)-adapted coframings are

the sections of a G( )_structure B et on Bg, where G(l) C GL(7,R) s a certain
4-dimensional Lie group. Note that BG(x) is a sub-bundle of the second-order

coframe bundle of M and defines what is often called a second-order G-structure
on M,
We now want to apply the equivalence method to the G( )_structure B G-

The structure equation of BG(]) consists of two parts—the first is equation (4)

The second will consist of the formulae for di1, da, dpty, and dpy. We can get
information on these by differentiating (4), yielding

(de1 + piaw)ac + (dpt — @aap)ad = 0
(dp2 — pano)aw + (dpz — p1apz)ab = 0

and
dler+¢2) —pmiaw+ ppaa=0 modd.

From these relations, it follows that there are 1-forms =, 7 and %;, %, and a
function?o on B such that
1

dp1 = —mAl — p1aw — 2uana + ty aaw
dpy = —maAl + pora + 2 Aw + tgwaa

and
dpy = —P1a8 — maa + paap
duy = —anf — maw + praps. ,f

Notethat (71, 72, ¥1, 12) arethe pseudo-connection 1-forms of gl)ef G( )_structure.
We now compute how the function ¢ (which is the onfy' non-gonstant com-

ponent of the torsion) varies on the fibers of B e BGl ’ IDIfferentlatmg the
above structure equations yields ) .r :-
W ." "

’ .
dto = to (p1 + 92) + 2(m — m2) mod o, 0 ‘i}

Thus, the equation ¢y = 0 defines a submanifold Bg, C Bc};(‘) which is a G-

structure where G is a 3-dimensional subgroup of Ggl). Because of the formula
for dtp, we see that, on Bg,, there must exist a 1-form ¢ and functions s; and s,
so that
T =—0+s1a+ 5w
! ! 2 mod 6.
M =—0—810—SWw
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Thus, by modifying the forms +; and 15, the structure equations can be reduced
to the form

dpr = oAl — piAw — 2pana —(s1 a + sy w)Af
dpz = onb + para + 2paw +(51 @ + spw)Ad
and
duy = —1A8 + ore + ©aA] 52 aAw
dy = —1nf + oAw + 1A +51 aAw.

The functions s; and s, constitute the non-constant terms in the torsion of this
Gy-structure,

To calculate how s and s, vary on the fibers of Bg, — Bg,, we differentiate
the above structure equations, yielding

ds; = s1 (201 + ¢2) — 312

modo, 6, w.
dsy = 57 (202 + 1) — 3¢

Thus, the equations s; = s, = 0 define a submanifold B, C Bg, which is a
G-structure on Bg, where the structure group G is now 1-dimensional. On Bg,,
we can now differentiate the identity

3d(p2— 1) = mAw + maa
and use the structure equations found so far to conclude that
Yiaw+Yrae=0 modd,

which implies that there exist functions Ky, K, and S so that

miY_[(Ky S w
(0= (5 &) () moa

3
It follows that b){ adding appropriate multiple of 4 to each of 11, 1, and o, the
structure equations,feduce to the form
'f.‘ cy M
ST IR TN
50
1
h! ;: \‘t dps = oAb +ana +2u1Aw
v

dp1 = oAl —piaw —2ppac

‘E}‘j " dp =ona +paap + Kz 0aw

o duy = oaw +p1aps +K) Oaa.
)
1

Now, the remaining pseudo-connection 1-form ¢ is uniquely defined by the
above structure equations. Differentiating these equations yields

do=(p1+p2)ac—piapy+0a(Lia+ Lyw)

for some functions L; and L on Bg,.

2 e
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At this stage we have determined a canonical parallelism on B, with structure
equations given by

a 1 M 0 o 0
dl 6 l==10 or+p2 O | a6 ]+]| aw
w 0 b2 2 w 0
where
dp1 = oAl —piaw —2pnc
dpy = onl +pana +2paw
dpy = oaa +paap +Ko rw
dpsy = oaw +p1ap2 +K1 Baa
and

do = (o1 4+ p2)aod —prapa+0a(lia+ Lw).

Moreover, as the method of equivalence shows, any self-equivalence of S with
itself preserving the paths geometry X lifts to a unique diffeomorphism of Bg,
with itself which preserves the eight 1-forms in this coframe. In partlcfular, .the
space of automorphisms of the path geometry T on S is a Lie group of dlrpensmn
at most 8. In fact, the dimension of this group can be 8 only if the functions K;
and L; are constants.

These structure equations can be collected into a more coherent form as

follows: Define an 51(3, R)-valued matrix ¢ by

—1(201 + ¢2) —p2 o
¢= o L1 — ¢2) B
g w 11 +2¢2)

Then the structure equations above take the form

0 Kiand Oa(Lia+ Lw)
dp+oad=10 0 Ky0aw
0 0 0

Setting ® = d¢ + ¢A¢, the Bianchi identity d® = dagp — oaD then gives rise to
the equations

dK, = (3g01 + (,02)1{1 ~Liw modf, «

dKr = B+ ¢1)K2 —Laa
dl) = (3(p1 +2(p2)L1 —Kijm +Jw mod 6, & S
dLy = (3p2+2¢1) Ly +Kapp + Jo modf,w I

mod 8, w

where J is some function on Bg,.
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From these structure equations, it follows, for example, that the expressions

K= (Kl o — L]H) ® (cw\6’)
K2 = (Kaw + Ly6) ® (6aw)

are well-defined sections of 7% ® A2T™* on M. Thus, these define tensors which
are the simplest invariants of a path geometry or second order ODE up to point
transformations. In the classical terminology, the functions K; and K, are what
is known as relative invariants. Furthermore, a little computation shows that J is
a relative invariant and that the cubic form J = J 6° is well-defined on M and
hence is another invariant of the path geometry.

Note however, that these invariants are defined on M, and not on either S or
Z. As an example of an invariant function on M, the ratio J*/(K 1K3)? is seen to
be constant on the fibers of Bg, — M and hence is a well-defined function on M.

Let us consider the meaning of the vanishing of the first two invariants, i.e., the
case where K| and K vanish identically. (Note that, by the Bianchi identities, this
isthe only way that K} and K, can be constants anyway.) By the Bianchi identities,
this forces L) and L, to vanish identically as well, so that Q vanishes identically.
Then, since d¢ = —@ad, it follows that there exists a local diffeomorphism
Bg, — SL(3,R) which identifies ¢ with the canonical left-invariant 1-form
on SL(3,R). This identification induces an identification of S (which can be
thought of as the leaves in Bg, of the integrable distribution or = 6 = 0) with the
left cosets in SL(3, R) of the subgroup P whose Lie algebra is of the form

O O *
* ¥ *
* ¥

In other words, S is is locally identified with SL(3,R)/P = RP2 Moreover,
we also get an identification of T (which can be thought of as the leaves in Bg,
of the integrable distribution w = § = 0) with the left cosets in SL(3,R) of the
subgroup I'T whose Lie algebra is of the form

O ¥ ¥
(e B R 3
¥ O* *

Of course, the homogeneous space SL(3, R)/ITis also diffeomorphic to RP?, but
its points can be regarded as the lines in the first RP2. Thus, the path geometry in
this case is just the classical path geometry of straight lines in the plane. Moreover,
the intrinsic geometric structure Bg, is identified with the group of symmetries
of this path geometry, i.e., the projective transformations of RP?. Note that a
consequence of our calculations is that this is the only path geometry (up to local
equivalence) for which the group of symmetries is actually of dimension 8.

Now let us consider the meaning of the vanishing of each of K 1 or Ky
separately. In terms of the ODE (1), Cartan showed that K, vanishes if and only

b
&
:
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if the function f satisfies 8* f/9p* = 0, i.e., if and only if f isa cubic polynomial
in p. On the other hand K vanishes if and only if f satisfies equation (5) of. 81,

Now, in the first case, when Ko vanishes, it follows that the ODE (1) is the
local equation for the geodesics of a projective connection on S in the usual sense
of differential geometry. Since a projective connection on a surface has a curvature
tensor which is well-defined on that surface, it should not be surprising that when
K> vanishes we can create expressions on M which are well-deﬁr.wd on S. In
fact, the vanishing of K, implies directly that the tensor K (which is clea.rly
semi-basic for the map A : M — S) is actually well-defined on S. Corppu}mg
higher derivatives of K as functions on Bg, and taking the right coml:?matlons
yields functions which are actually well-defined on S. Thus, they are first integrals
of the dual ODE on X. . .

PE:rhaps more interesting is the other side. When K vaanhes, it follows that
the dual equation to (1) (which we may not know explicit}y) is actually the local
equation of the geodesics of a projective connection. Again, the sz?me.arguments
show that by taking the right combinations of the (iterated) derivatives of Kz
(which we can compute from f without having to solve any ODE), we can arrive
at functions on Bg, which are constant on the fibers of the map BG3. —s X. Hence,
these will be functions on M which are first integrals of the equation ( 1). Thus,
equations (1) satisfying the curvature condition KX = O can usual.ly be integrated
by differentiation alone! (The reason we have to say “usuglly”.ls that there are
certain special cases where this procedure won’t lead to a pair of independent first
integrals. However, these cases are very rare and can only happens when th'e path
geometry has a non-trivial symmetry group, so that other methods, due to Lie, can

lied.
” aljflthou)gh Cartan did not pursue this, there are highejr orde.r conditions like
K, vanishing which will guarantee that the equations which satlsfy. them can be
integrated by an algorithm (see [5]). Unfortunately, we do not have time to pursue
this topic here.

A.2 The equivalence problem for scalar conservation laws. In §2 we_ha.lve
shown that a scalar conservation law determines the data (M; @, Q) consisting
of a 3-manifold M endowed with two linearly independent 2-forms @ (vyhmh is
closed) and  (which is nowhere vanishing and well-defined up to a multlple.).. In
addition the non-linearity of the conservation law is expressed by the condition
that the common linear factor of ® and Q defines a contact structure on M. We
shall study the geometry associated with the above (M; @, Q) structure 'unfler
diffeomorphisms of M which preserve @ and preserve L2 up to a non-vanishing
factor.
Let (@, 8, w) be alocal coframing of M such that

O=f0rw and Q=qanf (1)
with @ defining a contact structure on M, i.e.,

9adf # 0. (2
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i We shall say that a coframing (a, 0, w) is 0-adapted to the (M ; ®, Q)-structure At this stage we notice that the pseudo-connection form ¢ is uniquely deter-
|
to a non-vanishing multiple. It is easy to see that any two 0-adapted coframes are to scale. Furthermore, from

related as follows

arnda=Kanlarw

€

(

Now, the G-action on the function K is expressed by the relation
| it : in a 4-dimensi =-2K¢ mode, f, w.
where the “transition matrices” take values in a 4-dimensional subgroup Gy of dK @

‘ . i - i 11-defined u

‘ [ if the relations in (1) and (2) are satisfied with ® preserved and Q preserved up mined by the above structure equation. Thus the I-form « is now well-de p
i

[ 0 * a

|

-1 .
) — ( ; atl 8 ) ( z (3) we see that the invariant K vanishes identically if and only if « is integrable.

GL(3,R). Thus these local O-adapted coframings define 2 Go-structure Bg, on The equivalence problem now branches into two cases according to whether K
M.

: . . ishes or not.
l We now apply the equivalence method to compute the invariants of the above vanis

' : — i tion reduces to
! Go-structure. Differentiating (3) and using the condition d® = 0, we see that on | ¢ K = 0—In this case the structure equation
| ‘ Bg, we have the following structure equation N 2% 0 0 o 0
| =-1o0 0 |al6]+]anw
{ | « p1 om0 @ 0 d f: 0 ‘5 — w 0
! ‘ dl0)==[0 —p, 0)a]o + | toaw (4)
il w 0 wm ¢ w 0

Since ¢ is now canonically defined, we can differentiate the above equation to get

where ¢ is a nowhere vanishing function on Bg,. The Gg-action on t can be

dp=—puna
deduced by differentiating (4) which yields the relation

i which in turn (together with the above structure equation) uniquely determines the
‘ 4t =t (p1+2¢2) mod @, b, w. pseudo-connection form . Further differentiation yields
This suggests that we may restrict to local coframings on M which satisfy ¢ = 1.
We call such coframings 1-adapted. They are the sections of a G-structure Be,
on which the structure equation has the form ’

dp=-2punp+Lanb

for some function L on Bg,. ‘ _
At this stage that the 1-forms (e, 8, w; ¢, ) determines a canonical paral-

! “ a 200 m O a to oaw lelism on Bg, with structure equations given as above. In tpe. case ;3 = ;), it }::
1 " ‘ f; T 8 /(fz 0¢ ’ z * c(v)/\w easy to show that Bg, is a Lie group with («, 8, w; ¢, ) giving a basis for
i -

| Again, we deduce the G;-action on the function to by differentiating the above
N equation which yields

dL=5Ly mode,§.

Thus we can further restrict to the submanifold Bg, C Bg, definedby L = 1. On
Bg, we can set

H dto = —tgp — 3, mode, 6, w.

i . . . ¢=Po+;P0
Ml This suggests that we further restrict to the submanifold Bg, C Bg, defined by . .
b ” to = 0. On Bg, we have and hence from the above structure equations we obtain
' } f « 2 0 0 o K frw dPy= —p+jPw moda, 0.
L d{d|==]0 0O Jalo)+ QAW . )
' “ 1} [} w 0 5 —¢ w 0 Now restricting to the submanifold defined by Py = 0, we obtain an e structurfa

on M, i.e., a canonical parallelism on M with structure equations

* where K is a smooth function on Bg,. Note that the structure group G, C Gs is _ _
’ now 2-dimensional. i da=Panb, df = aaw, dw=(Qa~—Pw)ab.
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Notice that P and Q are well-defined functions on M. In what follows, they will
be refered to as the curvatures of the associated conservation law.

¢ K 3 O0—In this case, assuming, say, that K > 0, we may further restrict to the
submanifold Bg, C Bg, defined by K = 1. On Bg, the structure equation has

the form
0 00 @ —2pra + Oaw
0 0 0)alo|+]- eAl 4 anw

a
d{ 6| =~
w 0O ¢ O w AW

An easy computation shows that we can further reduce to an e-structure on M,
i.e., we have a canonical parallelism on M with structure equations given by

where

»=0 modae,d, w.

da=-2pra+0rw, df=—prb+anrw, dw = —unb

where 3

=0 modf, w and #=0 mode, 8, w.

Expanding out these congruences and substituting them into the structure equa- G
tions above produce a collection of well-defined functions on M which have i
interpretations as curvature functions of the associated conservation law, 4

A3 The equivalence problem for hyperbolic systems. In the following we will
show how to associate a geometry to a (non-degenerate) hyperbolic exterior dif-
ferential system (M; Q;, Q,).

Recall that a hyperbolic system is given by a transverse pair of decomposable
2-forms Qy, Q, on a 4-manifold M. This implies that there are local coframings
@', w?, w3, w* on M such that

Q =wlaw?, Q =wiawd. (1)
Clearly such coframings are determined up to the group GL(2,R) x GL(2, R).
Thus the Pfaffian systems Z; and =, generated respectively by w!, w? and W, Wt
are well-defined on M. Furthermore on any solution surface S C M to the
hyperbolic system Q; = Q, = 0, each of Ey and E, will have rank exactly equal
to one and will therefore induce two foliations on S by curves. These are the
classical characteristic curves and for this reason we shall call Z; and =, the
characteristic systems. The interaction of the geometry with the characteristic
systems and their prolongations is probably the deepest aspect of our subject. In
the following we shall only consider hyperbolic systems for which the behavior of
the characteristic systems—such as the ranks of their derived flags—is symmetric.

For a non-degenerate hyperbolic system the first derived system of each char-
acteristic system has rank 1. This suggests that we restrict to local coframings
satisfying (1) and the conditions

E:8
o
5

g
&

dw' =0 modw!, w?, dw’=0 modw?, w?. (2)
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Thus, w! and w? span the first derived systems of the two characteristic systems,
Now, for any coframing satisfying (1) and (2), there must exist functions A
and C so that

dw? = Awdaw* modw!, w? dw*=Cuw'aw? modw?, wt. (3)

By assumption, Z; and Z; are non-integrable. It follows from this and (2) that
neither A nor C can vanish and thus we can further restrict to coframings which
satisfy A = C' = 1. We shall say that a coframing is 1-adapted to the hyperbolic
system if it satisfies the conditions (1), (2), and 3) with A = C = 1.

Ifw = (w', w?, w3, w*) is a 1-adapted coframing on a domain U C M, then
any other coframing on U, say @ = (@', @2, @%, @*) is seen to be 1-adapted if
and only if there exist functions a, af, a # 0, and a§ # 0 on U so that

w! ag/a 0 0 0 w!
o2 ‘al a2 0 0 w?
@171 0 0 a¥at 0 w?
@ 0 0 ag aﬁ w*

The “transition matrices” take values in a certain 4-dimensional lower triangular
subgroup of GL(4,R) which we shall henceforth denote G. Thus, the local
coframings which are 1-adapted to the hyperbolic system are the local sections of
a principal G-bundle B¢ — M which is a subbundle of the bundle of all coframes
of M. In other words, Bg is a G-structure on M in the usual sense. We will
refer to B as the G-structure associated to (or determined by) the non-degenerate
hyperbolic exterior differential system (M; Qi, Q).

Now we shall apply the equivalence method to the G-structure B¢ in order
to understand its invariants. Accordingly, we write the structure equations on Bg
in the form

! bu—¢n 0 0 0 o\ (T

w? ¢ ¢n 0 0 w T 4
d w7 0 0 ¢n—ga 0 | | * 7 “)

w? 0 0 b43 baa w? T

where, in the terminology of the equivalence method, the ¢i; are the pseudo-
connection forms and the T* are the torsion terms (which are semi-basic’ ). These
forms are not uniquely determined by these equations, and, following the usual
method of equivalence, we now want to understand how modifications of the
pseudo-connection forms can be employed to simplify the torsion terms.

Now, by the defining properties of the G-structure B, we have

dw'= 0 modw!,w? T'= 0 modw!,w?
dw? = wiaw* modw!, w? T? = wiaw* modw!, w?
dw’= 0 modw?,w! 5 T3= 0  modw? w?
dw* = w'aw? modw?, w* T* = w'aw? modw?, w?.

. . . - i
5].e., these terms have the form T% = TJ'-k w’ aw* for some functions T;k =-T, 4 on B.
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It follo“{s that there exist 1-forms x1, xa2, X3, and x4 which are linear combinations
of the w* so that

T? = W3awt + x1aw! + X2Aw?,
T4 = w'aw? + X3Aw3 + X4Aw4.

The equations for dw? and dw* can therefore be written in the form
dw? = —(¢21 - xl)Awl - (¢22 - Xz)sz + wiaw?t
dw* = —(da3 ~ x3)Aw® — (Gas — Xa)Aw* 4+ wlaw?.

It follows that we may assume that the #i; have been chosen so that

T? = w3 aw? and T =w'aw?,

$0 we assume this from now on. This condition still does not determine the bi;
since making the replacements

é2 2 +ayw! + ayw?
¢ |, [dntaw +au?
da3 ba3 + 3w + cqwt
Pas baa+caw? + cpwt

in the above equations will clearly not affect 72 or T7%. However, the above
congruences on 7" and 7 imply that

T'=Thw'aw? + T w'aw*  modw?
T° =T} waw' + T3 w3aw?  modw?

and the above replacements can be chosen so that Ty = T}, = T3 = T3, = 0.
Note that the only replacements of the above form which preserve these latter
conditions are ones with a; = a3 = ¢4 = ¢; = 0.

The upshot of this discussion is that, for the G-structure we have associated
to a non-degenerate hyperbolic system, there is a choice of pseudo-connection so
that the torsion takes the form

T! wi(prw! + pyw? + pyw?)

T2 | _ wiaw 5
T | = | ot (ge® + g1t + go?) (5)
T wlaw?

Moreover, with the structure equations in this form, the 1-forms ¢z, and ¢ay
are unique, the form ¢y; is determined up to the addition of a multiple of w!,
and the form @3 is determined up to the addition of a multiple of w?. At this
stage, no further reduction of this G-structure can be made without making some
non-vanishing assumptions on the invariants.

To complete the discussion of the structure equations, it will be necessary
to compute their “Bianchi identities” by differentiating the equations in (5). We
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will not give the details of the calculations (which are straightforward, if tedious),
but shall describe the results. First of all, differentiation of the equations (5) and
reduction of the results modulo various combinations of the w* shows that there
are relations of the form

dp) = p1é2 —q2 $43

dps = p3 (3¢22—2¢44) +pa b43

dps = ps (2422) L modw! o, o ©)
dgs = q3 bas —ps d21

dgi = 1 (3¢4a—2022) +q2 61

dg2 = ¢2(2¢44) )

We shall use the notation Vp4 to mean dpg — 2ps ¢29, i.e., the semi-basic part of
the exterior derivative of p4, and similarly for the other quantities.

If we now introduce “curvature” 2-forms @y, Pyq, P21, and d43 by the
equations

ddn = —¢an(p3w® + paw?) + gawlaw? + Ipsqiwiaw® + @

dpas = —daan (qw' + g2w?) +prwiswt + fqips wiaw? + By ™
déa = —dun(das — 2622 — prw?) + Oy
ddas = —dasn(d22 — 264 — 3 w*) + a3,
the exterior derivatives of the equations (5) become

0 = (O~ Dasg)aw' — (Vp1aw' +Vp3aw+ Vpsaw? — g3p3 w3 aw?) aw?

0= —‘Dzll\wl —<I>22Aw2—wl/\w2/\w3 (8)

0 = (®Pay—P0)Aw* —(Vg3aw+Vgiaw' + Vganwl—pi gy w'aw?) aw?

0 = —®prw? —Ouawt—wiawiaw!.

(Note that because ¢21 and @43 are not canonical, the expression Vps is actu-
ally only well-defined modulo w3. However, since this term only occurs wedged
withw?3, the resulting term is well defined. A similar comment apphes to tl}e. other
ambiguities caused by the ambiguity in the pseudo-connection.) The .1dent1t.1es (8')
now give relations among the coefficients of the derivatives of the primary invari-
ants (i.e., the torsion coefficients) and the curvature coefficients. It is not useful to
write these out here; the form (8) will suffice for our purposes.

A little exterior algebra shows that the relations (8) imply that ®2; and @44
are semi-basic 2-forms, i.e., they are quadratic expressions in the w*. In fact,

! 3 4
Oy = —k1 Aw! — Ky aw? and Dy = ~K3AW° — KgAW (9)

where .
Ki — kiij
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for functions &;;, suitably skew-symmetrized so as to be well-defined. Using this
plus some more exterior algebra, it follows that there are 1-forms ¢21; and ¢433 so
that

(I>21 = —-(K,l - w3)/\w2 —_ ¢211Aw1

(10)

We now want to interpret the vanishing of the torsion coefficients in (5) in
terms of integrability of various bundles intrinsically associated to the original
hyperbolic system and use this to derive (local) normal forms in various special
cases. We will then use the structure equations to develop a test for ‘linearizability’
of non-degenerate hyperbolic systems.

We begin our first interpretation by noting that the rank 2 Pfaffian system
© = {w', w} spanned by the first derived systems of Z; and Z; is well-defined.
Indeed, from the structure equations, the 2-form

&y3 = —(K,3 - w')Aw4 - ¢433/\w3.

Q=w'aw?

itself is well-defined, since the scalings of w' and w? cancel. The integrability
of Q has the following interpretation:

For any non-degenerate hyperbolic system, the system © = {w!, w’}
is Frobenius if and only if the torsion coefficients satisfy ps = g2 = 0.
Moreover; the rank one systems {w'} and {w*} are integrable if and
only if we have, in addition to the above, the relations p3 = q; = 0.

In these special cases we have the following normal forms result:
Proposition:  Let (M; Q;, Q) be a non-degenerate hyperbolic system with
ps = q2 = 0. If p3q1 # O, then the hyperbolic system is locally generated by the
PDE system

Uy +uu, = C, Cy, #0,

vz +ovy = D, D, #0
where C and D are functions of z,y, w and v. On the other hand, if p3 = q1 =0,
then the local model is given by the following (wave equations)

uy =C, Cy #0,
vg = D, Dy #0.

Remark: Non-degeneracy of the hyperbolic system is expressed by the coupling
condition C, D, # 0.

As another example of the use of the invariants of B to understand normal

forms, we shall give a characterization of linear systems of PDE in terms of these
invariants.
Proposition: A non-degenerate hyperbolic system (M ; Q1, Q) satisfies ps =
=p3=q =p = @ = 0and Pp+dsyy = Fw'aw? for some function F
if and only if it is locally the hyperbolic system associated to a linear first order
hyperbolic PDE system.
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Remark: In this case, a little algebra shows that
(@22 — Dag) = Kw' au?,

Furthermore, the quadratic differential form

ds’ =w' ow?
is well-defined and induces on solution surfaces an intrinsic pseudo-Riemannian
metric whose null-geodesics are the characteristic curves. The Gauss curvature
of this metric may then be verified to be the function K above. In this way the
geometry associated to a PDE induces, in an intrinsic manner, a geometry on
solution surfaces.
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Let A be an associative unital algebra over the complex numbers and let QA
be the differential graded algebra of its noncommutative differential forms (/3]).
The first topic of this paper is a family of canonical operators b, d, k, B, P,G on
QA arising in the following way.

On QA we have two differentials

b b b
Q4 & Q4 o4 o
d d d
where d is the differential associated to the DG algebra structure, and where b, the
Hochschild differential, is such that (A, b) is the standard normalized complex
calculating the Hochschild homology HH,(A).

Let us now view QA as analogous to the space of differential forms on a
Riemannian manifold, with b playing the role of the adjoint of d. The ‘Laplacian’
bd + db then has the form 1— &, where & is an operator introduced by Karoubi
([6], 2.12). The Karoubi operator « satisfies a polynomial identity in each degree,
hence QA decomposes into generalized eigenspaces for the Laplacian. Thus we
have the ‘harmonic decomposition’

QA = PQA & P1QA ¢))

where P is the spectral projection onto the generalized nullspace for the Laplacian
and P+ = 1 — P. The ‘Green’s operator’ G is then defined to be zero on PQA and
the inverse of the Laplacian on P-QA. Finally, the Connes boundary operator B
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