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A TRANSCENDENTAL METHOD 

IN ALGEBRAIC GEOMETRY 

by PHILLIP A. GRIFFITHS 

1. Introduction and an example from curves. 

It is well known that the basic objects of algebraic geometry, the smooth projective 
varieties, depend continuously on parameters as well as having the usual discrete 
invariants such as homotopy and homology groups. What I shall attempt here is 
to outline a procedure for measuring this continuous variation of structure. This 
method uses the periods of suitably defined rational differential forms to construct 
an intrinsic " continuous " invariant of arbitrary smooth projective varieties. The 
original aim in defining this " period matrix " of an algebraic variety was to give, at 
least in some cases, a complete invariant (i. e. " moduli ") of the algebraic structure, 
as turns out to happen for curves. It is too soon to evaluate the success of this pro­
gram, but a few interesting things have turned up, and there remain very many attrac­
tive unsolved problems. In presenting this talk, I shall not give references as these, 
together with a more detailed discussion of the material discussed, may be found in 
my survey paper which appeared in the March (1970) Bulletin of the American Mathe­
matical Society. 

Let me begin by discussing the example of hyperelliptic curves. Consider the 
family of affine curves with the equation 

y2 = (x - sj . . . (x - s2g+2). 

Denoting by Vs the complete curve corresponding to s = (sl9..., s2g + 2) and letting 

S={s: Y\(sj-sk)*0}, 

we see that { Vs }seS forms an algebraic family of non-singular curves of genus g. Fur­
thermore, for a suitable smooth completion S of S (e. g. S = p2g+2)> w e m a v enlarge our 
family to { Vs }ses by adding suitable degenerate curves V^ corresponding to the points 
seS — S. The notations { Vs }seS and { Vs }ses will be used throughout this talk to 
represent respectively an algebraic family of smooth, projective varieties Vs with smooth 
parameter space S, and a completion of this family where S is smooth and 
S — S = D1 u . . . u D, is a divisor with normal crossings. The varieties Vg (se Dj) 
may be thought of as singular specializations of the general Vs. 

On the curve Vs we consider a basis <pl9..., cpg for the holomorphic differentials 
and a canonical basis yl9..., y2g for the first homology H^V^ Z). Thus we might 
choose 

x " ~ d x / 1 ^ 

(pa = ( a = l , . . . , g ) 
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and, upon representing Vs as a 2-sheeted covering of the x-line, we have the picture 

t S 2 g + 1 \ S2g + 2 

? g + l 

The choice of the { <pa } is determined up to a substitution <pa -> ^ A^cpß9 det (A%) ̂  0, 
0 = 1 

2g 

and the { yp } are determined up to a transformation yp -> £ 7^yff where T = (T°) 

is a 2g x 2g integral matrix which preserves the intersection matrix Q = ( , * 

of the { yp }. Thus 4 e GL(g9 C) and T G Sp(g9 Z). 

We now form the period matrix 

Q(s) = 

which is determined up to the equivalence relation 

Q ~ AQT 

arising from the indeterminacy of the { <pa } and { yp }. Because of the obvious relations 

1 <P« A F« > °> 

the period matrix Q(s) satisfies the Riemann bilinear relations 

I 
JVs 

<paA(pß = 0 

' ÇlQÇl = 0 

Thus, if we let D be the set of all g x 2g matrices Q which satisfy the Riemann bilinear 
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relations and with the equivalence fì ~ AQ, (A e GL(g, C)), we see that the periods 
of the holomorphic differentials on Vs lead to the period mapping 

fì: S - D/Sp(g9Z)9 

where Sp(g, Z) acts on D by sending fì into fì'T-1. We recall that D is a complex 
manifold which is biholomorphic to the Siegel-upper-half-plane of all g x g matrices 
Z = X + y/— 17 with Z = 'Z, Y > 0. Furthermore, D is a homogeneous complex 
manifold with automorphism group Sp(g9 U) which acts in the same way as Sp(g9 Z) 
above. For g = 1, D is of course the usual upper half plane. 

Here are a few properties of the period mapping: 
(a) The point fì(s) depends only on the intrinsic structure of Vs. Furthermore, 

Q(s) = fì(s') if, and only if, the curves Vs and Vs. are isomorphic (Torelli's theorem). 
Thus the period matrix gives a complete invariant for non-singular curves. 

To discuss the next two properties, we need to digress a little about the monodromy 
group of a family of smooth algebraic varieties. In the case of our family of hyper-
elliptic curves, the canonical basis { yp } of # i ( K , Z) will change when we displace Vs 

around a closed path in the parameter space S. More precisely, fixing a base point 
s0eS and letting V = VSQ, the fundamental group n^S) acts on the homology H1(K, Z). 
As is always the case, this action preserves the intersection pairing on homology, 
and we have then the monodromy representation 

n^S) "^ Aut (H<Sy9 Z)) ^**Aut (D) 
I I I 

Sp(g, Z) 

The image T = p(n1(S)) will be called the monodromy group. 

(b) For g = 1, the monodromy group is of finite index in 51,(2, Z) ^ Sp(ì9 Z) 
(For an arbitrary family of elliptic curves, T is either a finite group or is of finite index 
in SL(29 Z)). This result should be interpreted as being a first suggestion that the 
monodromy group in an algebraic family of algebraic varieties has extremely remarkable 
properties. 

(c) A further indication of this is the " rigidity property ", due to Grothendieck in 
this case. This states that if we have two families of curves { Vs } s e S , { Vs' }seS with the 
same parameter space S9 with VSo = VJ0, and with the same monodromy representa­
tions p and p', then the period mappings fì and fì' are the same. In other words, 
the period mapping is determined by the monodromy representation plus its value 
at one point. 

(d) The next property may perhaps be thought of as relating algebraic geometry 
to group representations. We recall that the study of the discrete series representa­
tions of the automorphism group Sp(g9 U) is intimately related to the construction 
of certain T-invariant meromorphic functions on D. If i// is one such automorphic 
function, then the composite 

\l/oQ 

turns oui to be a rational function on S. Roughly speaking, we may say that the study 
of L2(Sp(g, U)) leads to functions which uniformize the period mapping (" automor­
phic function property "). 
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The proofs of properties (b), (c), (d) above may be based on studying asymptotically 
the period matrix Q(s) as s tends to a point se S — S. More precisely, a neighborhood 
in S of a point se S — S will be a punctured poly cylinder 

P* ^ À* x . . . x A* x A x . . . x A 
k m-k 

where A is a unit disc in C, A* = A — { 0 } is the punctured disc, and dim S = m. 
By localizing the period mapping at infinity, we will have a holomorphic mapping 

fì: P* -• D/T 

where we are interested in the behavior of fì(s) as \\s\\ -> 0 (s = (sl9..., sm)eP*). 
This asymptotic analysis of the period mapping is a purely function-theoretic problem 
which, in the end, should provide the best general method for proving the various 
global properties of fì including the analogues of (b)-(d) above. 

2. Construction and elementary properties of the period mapping. 

We first observe that giving a g x 2g matrix fì with the condition rank (fì) = g 
and the equivalence relation fì ~ AQ (A e GL(g, C)) is the same as giving a point 
fì e G(g, 2g)9 the Grassmann variety of g-planes in C2g. In fact, the point fì is the point 
in C2g spanned by the row vectors of the matrix fì. Thus, giving the period matrix fì(s) 
above is the same as giving a g-dimensional subspace of H\V, C), this subspace being 
determined up to the monodromy group T. It is now easy to see that this g-dimen-
sional subspace is simply the g-plane 

spanned by the holomorphic 1-forms, followed by the identification 

H^V^O^H^C) 

which is determined up to T. Thus, giving the period matrix fì(s) is equivalent to 
giving the g-dimensional subspace Hlt0(Va, C) of H\V, C), and both of these are deter­
mined up to the monodromy group. 

In general, let { Vs }seS be a family of smooth, projective algebraic varieties, and 
introduce the notations, E = Hn(VSo, €), EK = Hn(VSo, U), Ez = Hn(VSo, Z). Using 
standard Kahler manifold theory we find that the cup product on H*(V, C) together 
with the Kahler class of the projective embedding give rise to a non-degenerate bilinear 
form 

Q: E®E -+ C 

which is rational on Ez, is invariant under the monodromy group T, and satisfies 
Q(e, e') = ( — l)"ß(e', e). We will denote by G, GR , Gz respectively the automorphism 
groups of E, Eu , E z which preserve the bilinear form Q. Gc is a complex semi-simple 
algebraic group, Gm is a real form of G c , and Gz is an arithmetic subgroup of GK 

such that the monodromy group T c= G z . 
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From Hodge theory we recall the Hodge decomposition 

Hn(Vs9 C) = 0 Hp>q(Vs) (H™(VS) = tf^W), 
p+q=n 

and using this we define the Hodge filtration F°(VS) <= . . . c Fn(Vs) = Hn(VS9 C) by 
the formula 

Fp(Vs) = Hn'°(Vs) + . . . + H"-p>p(Vs). 

Using the Kodaira-Spencer continuity theorem, it follows that FP(VS) is a continuously 
varying subspace of Hn(Vs, C). Consequently, if we identify all Hn(Vs, C) with 
E = Hn(VS0, C) and let F(E) be the flag manifold of all nitrations F° a ... œ Fn = E, 
dim F p = dim FP(VS)9 then we have a continuous mapping 

fì: S -» F(E)/T 

which is the first form of the general period mapping. It will be convenient to write 
fì(s) = (fì°(s),. . ., fì"(s)) where the fìp(s) are subspaces of F(E) taken modulo T. Using 
the structure equations of the Kodaira-Spencer-Kuranishi theory of deformation 
of complex structure, it follows that Q(s) varies holomorphically with s e S. 

The period mapping fì will satisfy three bilinear relations, two of which are classical 
and generalize the Riemann-bilinear relations, and one which is non-classical but 
which is crucial for understanding the general period mapping. Recalling the bilinear 
form Q mentioned above, these bilinear relations are 

(I) Q(Qp
9Q-p-1) = 0\ 

(II) ( 7 ^ ) W , W) > 01 Hod^-R^ann bilinear relations 

(III) Q(dOP, QT~P~2) = 0 infinitesimal bilinear relation. 

The first relation is self-explanatory; the second means that, for any choice of basis { ea} 
for fìp, the Hermitian matrix 

is non-singular and has a fixed signature; and the third bilinear relation means that 

<k Q[ — {W(s)}9 n»-p-2(s)j=o 

where (s1,..., s„) are local coordinates on S. 

Suppose now that we let D be the algebraic variety of all points (F° , . . . , F") e F(E) 
which satisfy (I), and let D be the open set in D of all points which satisfy (II). Then 
D is acted on transitively by the group G c , and D turns out to be the GR orbit of a sui­
table point in D. Thus we have a diagram 

D œ D 
|| || (H = GmnB) 
GW# <= Gc/B 

where B is a parabolic subgroup of Gc and if is a compact subgroup of GK . In the 
case of elliptic curves, D c D is the upper-half-plane z = x + iy9 y > 0 embedded 
in Pj = C u { oo }. The group Gc is the group of linear fractional transformations 
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z -> az + b/(cz + d), Gu is the subgroup of real transformations, and D is the GK 

orbit of yf — 1. Since r c Gz , the monodroriiy group is a discrete subgroup of Gu 

and acts properly discontinuously on D. Consequently, D/T is an analytic space 
and the period mapping is a holomorphic mapping 

fì: S -• D/T. 

In the case of curves, D is biholomorphic to a bounded domain in Cg(g+1)/2. How­
ever, for n > 1, D is no longer a bounded domain and consequently the holomorphic 
mappings into D will not have the strong function-theoretic properties (e. g. normal 
families) which are present when D is a bounded domain. However, if we consider 
only the mappings into D which satisfy the infinitésimal bilinear relation (III), then 
it is increasingly becoming clearer that these have the qualitative properties of mappings 
into a bounded domain. Thus, e. g., a holomorphic mapping 

O: A* -• D 

of the punctured disc 0 < 11 \ < 1 in D which satisfies (III) will extend continuously 
across t = 0. A much deeper recent result is due to Wilfried Schmid, who has proved 
that an arbitrary holomorphic mapping 

O: A* -• D/Gz 

which satisfies (III) is, when \t\ -> 0, strongly asymptotic to an orbit 

exp 
<&*">• 

where N is a very special nilpotent transformation of £ z and fì0 is a point in D. From 
this it follows that the asymptotic analysis of these periods of algebraic integrals is 
reduced to a problem in Lie groups. 

3. Deeper properties and open questions concerning the period mapping. 

We want to discuss the analogues of the properties (a)-(d) for the periods of the 
elliptic curve in the general case of a period mapping 

fì: S -+ D/T 

arising from an algebraic family { Vs }seS of algebraic varieties. 

(a) Of course the point fì(s) e D/T depends only on the intrinsic structure of Vs. 
However, except for curves there is essentially nothing general known about the global 
equivalence relation determined by fì. There is some heuristic evidence that, in 
general, the equivalence relation might be closely related to birational equivalence; 
i. e. the " Torelli property '' should hold in general. Along these lines, it is perhaps 
an easier problem to determine the equivalence relation infinitesimally; i. e. to find 
the kernel of the differential dfì. The best example known here seems to be when the 
Vs are smooth hypersurfaces in projective space. Then, except for the obvious example 
of cubic surfaces, the differential dQ is injective on the biregular moduli space of the Vs 

(" local Torelli property "). 

The dual problem to finding the equivalence relation of fì is to determine which 
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points of D come from algebraic varieties. When D is the Siegel upper-half-plane, 
even though not every point fì e D is the period matrix of a curve, it is obviously the 
case that every fì is the period matrix of an abelian variety and therefore may be said 
to come from algebraic geometry. However, this is essentially the only case when 
all points are a period matrix of some algebraic variety, and to my knowledge there is 
not yet even a plausible candidate for the set of points in D which arise from algebraic 
geometry. 

(b) Concerning the " size " of the monodromy group T, we have Deligne's theorem 
that T is semi-simple and the result that the image fì(S') has finite volume in D/T. 
From this it follows that if T' is any larger discrete subgroup of GR which leaves invariant 
the inverse image n~1(0(S)) for n : D ~+ D/T the projection, then T is of finite index 
in T'. These facts, plus a few examples, indicate that it might be the case that there 
is a semi-simple subgroup GQ of GQ such that the monodromy group is commensu­
rable with Gz = Gzn GQ (recall that this means that T n Gz is of finite index in both T 
and G2). The available evidence certainly indicates that T should be large. 

(c) Matters are somewhat better regarding the " rigidity property ", which states 
that the period mapping fì : S -* D/T is determined by its value at one point together 
with the induced map fì* : 7i1(S) -• T. This property was proved by myself for an 
arbitrary holomorphic mapping fì satisfying the infinitesimal bilinear relation (III) 
but making the strong assumption that S is complete. Then Deligne proved the 
result in case fì arises from a family { Vs } s e S of algebraic varieties. The result for a 
general holomorphic mapping fì satisfying (III) follows from Schmid's nilpotent 
orbit theorem mentioned above. 

(d) Given a period mapping fì: S -> D/T, it is expected that the equivalence rela­
tion given by fì is at least an algebraic equivalence relation; i. e. there should exist a 
sub-field ^ n of the field 0t of rational functions on S such that fì(s) = fì(s') if, and 
only if, \//(s) = ij/(sf) for all \j/ e^n. Furthermore, by analogy with the classical case 
n = 1, it is to be hoped that $£n arises by composing the mapping fì with something 
on D/T. More precisely, we should like it to be the case that the discrete series repre­
sentations in I?(GM) lead to the construction of some " analytic objects " on D/T which, 
upon composition with fì, yield SHa. This is a problem of fundamental importance, 
which may well be related to the question mentioned above of saying which points 
of D come from algebraic geometry, and about which nothing really is known. What 
is known is that the discrete series part of L2(GR) seems to lead to " automorphic coho­
mology " on D/T, but it is a mystery as to what this might have to do with algebraic 
geometry. 

These problems mentioned here are discussed in more details in the survey paper 
referred to at the beginning of this talk. This survey paper also contains some conjec­
tures not discussed above as well as the references for all of the material presented. 
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