Two Applications of Algebraic Geometry to Entire
Holomorphic Mappings
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Phillip Griffiths**

In this paper we shall prove two theorems concerning holomorphic mappings of
large open sets of C* into-algebraic varieties. Both are in response to well-known
outstanding problems, and we feel that the techniques introduced should in each
case have further applications.

To state our first result, we recall that a holomorphic mapping into an
algebraic variety is said to be algebraically degenerate in case the image lies in a
proper algebraic subvariety.

Theorem 1. Let X be an algebraic variety whose irregularity satisfies
g >dim X.

Then any entire holomorphic curve
fr €oX

is algebraically degenerate.

We remark that the irregularity ¢ = h"%(X) is the dimension of the space of
holomorphic 1-forms on any smooth model for the function field of X. Since
such desingularizations exist by Hironaka’s well-known theorem, and since gisa
birational invariant, our definition of the irregularity makes sense.

When X is a curve, this theorem was proved by Picard [26] in a paper closely
related to his proof of the usual Picard theorem. Nowadays this case is an
obvious consequence of the uniformization theorem, but unfortunately this
latter result does not generalize. Some 47 years later Theorem I was formulated
by A. Bloch [1], who established several special cases and contributed the
essential technical idea of using jets. To a reader trained in modern mathematics
Bloch’s paper is obscure to put it mildly, and interest in the subject was revived
by Ochiai [25], who considerably clarified matters and who formulated a
technical result that would yield what he termed Bloch’s conjecture.

Our approach is different in that rather than establishing Ochiai’s technical
result (which is, in fact, true), we use the method of negative curvature. The
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difference is in a sense more apparent than real, in that the essential ingredient
in both proofs is the use of higher-order jets to detect geometric consequences of
the assumption g > dim X, consequences of a somewhat subtle character that
may not be evident from first-order considerations.

In addition to the work of Bloch and Ochiai, our proof was motivated by the
recent paper (2] of Bogomolov, who used symmetric differentials to show the
existence of finitely many rational and elliptic curves on a surface of general
type with ¢f > c,. In this paper we shall use jet differentials to construct a
negatively curved jet psuedometric that leads to the proof of Theorem L. For any
surface of general type these exist in abundance—even when H%(Sym™ 2,)=0
for all m > 1—and it is our feeling that the systematic use of higher-order
differentials presents an algebrogeometric technique that may be useful in other
contexts. For this reason we have, in Section 1, attempted to clearly explain the
basic concepts. We have also shown that, for any smooth n-dimensional variety
X for which ¢,(2})" > 0, the Euler characteristic of the sheaf of Jjet differentials
grows at the maximum rate, and for general type surfaces these jet differentials
give a birational embedding of a suitably prolonged projectivized jet bundle.

Our second main result is in response to the following well-known

Conjecture. An n-dimensional algebraic variety X is measure-hyperbolic if, and
only if, X is of general type.

(Cf. Kobayashi [20}—the relevant definitions together with additional references
are given in Section 4 below.) The implication

X general type = X measure - hyperbolic

was established some time ago, and so the conjecture pertains to the converse.
When n =1 the result is a simple consequence of the uniformization theorem
and classification of curves according to their Kodaira dimension. Turning to
surfaces, the conjecture would follow from showing that, for any surface X not
of general type, there is a holomorphic mapping

f:AXC-X

that takes the origin to a given general point on X and whose Jacobian is not
identically zero. Using the classification of surfaces, one is easily reduced to
constructing f when X is an algebraic X3 surface. These fall into an infinite
number of 19-dimensional algebraic families ¥,. Our result is

Theorem II. An algebraic K3 surface X €5, is not measure-hyperbolic when
n=12 or3.

The proof is by showing that on any such X there is a family of oo! elliptic
curves (all singular), which then leads to the desired mapping S These curves are
constructed by projective methods. In fact, the construction is valid for all n, but
the proof of Theorem II does not go through due to a certain technical point
(involving singularities) that we are unable to resolve. This point is one of those
issues that are in some sense “geometrically obvious” but whose proof will
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require a deeper understanding of possible degeneracies than we are able to
muster. Nailing it down seems to us a very worthwhile project, as it would have
the following geometric consequence:

(*) On any algebraic K3 surface X € ¥, there are a positive finite number of
rational curves that have (n + 1) distinct nodes.

Our proposed proof of this assertion—which has the existence of oo’ elliptic
curves as an easy consequence—is by induction on the degree 2n of X C P**!,
and furnishes a technique that may be useful in other contexts.

It is a pleasure to thank Joe Harris for several conversations pertaining to
Section 4, and for helping us with several incomplete but enjoyable “proofs™ of

*)-

Part A. Jet Differentials and Bloch’s Conjecture

1. Jets and Jet Differentials

(a) Definition and basic properties of jet spaces. We shall first explain jets for
holomorphic mappings into a smooth complex manifold X.
Given x € X, we denote by A a disc of any positive radius and consider
germs of holomorphic mappings
f:A->X
that satisfy f(0) = x. In a local holomorphic coordinate system any such fis
given by its convergent series

22 23

f(z)=f(0}+f(l)z+f(2)§.!_+ {3]§T+-“’ (1.1)

where f*) € C" and f(© = x.
Two germs f and f osculate to order k in case
f(o) =f{m, Jr(l} =f‘”, . ,f“" =f“‘"
The equivalence classes of such germs will be called jers of order k at x and
J

denoted J, (X),. It is clear that

HX)= | Jdx),

forms a complex manifold of dimension n + kn, and if U C X is an open set on
which we have holomorphic coordinates, then this choice of coordinates induces
an isomorphism

J(U)y= U x C*.

Given a holomorphic arc f:A— X with f(z) = x, we denote by j (f),
€ J,(X), the k-jet defined by the germ of f at x. The notation

Je(f) 1A= J(X)
will be used to denote the natural lifting of f to k-jets. Intuitively, J (X)),
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consists of kth-order infinitesimal arcs centered at x, and Ji(f) describes the
family of these arcs along the holomorphic curve f(4). In general, a holomorphic
mapping
hi XY
between complex manifolds induces a mapping
he : J (X)) J(Y)

on k-jets. For k = 1, we have the usual notion of tangent vectors and induced
map on tangent spaces.

The jet manifolds J, (X) are holomorphic fibre bundles over X , but for k > 2
they are not vector bundles. However, there are obvious maps

Jear(X) > T (X) (12)

whose fibres are affine linear spaces.

Using local coordinates on X so that jets may be expressed in the form (1.1),
the fibre of (1.2) amounts to fixing x = f, fO, . f® and having f*+D
free to vary over C". If, moreover, f(!) = - .. = f®'= 0, then f**1 transforms
like a tensor in T,(X). In other words, the fibres of (1.2) are affine bundles
whose associated vector bundle is T(X).

Next, we will define an action of C* on Jets that amounts to reparametriza-
tion by a constant dilation or contraction. Recalling that A denotes a disc of
unspecified positive radius, given f: A— X and 1 € C*, we set fi(2) = f(#z) and
define

iU =00k ):

In the coordinates (1.1),

- {f(ﬂl’f(l), . ,f(k)} = {f{OJ,[f(l), s i tkf(k)}‘ (1.3)
If J¢(X) denotes the nonconstant jets—i.e., those with some f() 0 for 1 < J
< k—then this C* action preserves J#(X) and we define

P (X)=Jg(X)/Cx.

For k =1 we obtain the projectivized tangent bundle Pi(X)=PT(X), whose
elements will be written (x,£), where x € X and £ EPT_(X) is a tangent
direction. It is clear that P,(X) is a complex manifold, and is in fact a
P"~ -bundle over X.

For k > 2 the objects P,(X) are perhaps less familiar. The fibre Fow OF
P (X)— X is a weighted projective space (cf. Dolgacev [8]); it is the quotient of
C*" — {0} by the C*-action

‘- {w(l),w(ﬂ, e, w(k)} = {mlilJZw,u)’ e tkw”‘)}, (]_4)

where w'/) € C”. For k > 2 this action has fixed points, and when also n > 2 the
fibre F, , is a projective algebraic variety having what are usually termed
quotient singularities. For example, when k = n = 2 the fibre is a quotient of
C* — {0} under the action

- {x, y,u,0} = {1x, ty,rzx,ﬁz}.
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Taking 1 = — 1, the plane x = y = 0 is left fixed and F, , has a singular line. In
fact it is biholomorphic to the cone {w?+ w3 + w2 =0} in C*. The presence of
singularities in P, (X)) will not cause any difficulty, since in fact these weighted
projective spaces are quite nice varieties that are well understood.

We shall be using jets to study holomorphic curves f: A—> X in general
complex analytic varieties X that may have singularities. It is, of course,
desirable to define intrinsically the jet spaces associated to X. However, for our
purposes this would take us too far afield, and is not necessary, for the following
reason: Given any resolution X - X of the singularities of X, there is a unique
lifting f :A- X of any holomorphic curve whose image does not lie entirely in
the singular locus of X. Since we shall be using jets to prove statements like “any
entire holomorphic curve f: C— X is analytically degenerate”, this device of
using resolution of singularities will suffice for our needs.

(b) Formalism of jet differentials. We will now define the sheaves of jet
differentials on a complex manifold X. On the weighted projective space F, ,
given by the C* action (1.4) we consider polynomials ¢(w) in the kn variables
wil oo, wi™. Assigning to w{”) the weight /, we consider polynomials that are
homogeneous of weight m. Equivalently, the polynomial ¢ should satisfy

&1+ w) = t™p(w).
By taking local coordinates on X and allowing the coefficients of ¢(w) to be
holomorphic functions, we may define the sheaf §, ,, of k-jet differentials on X of

weight m.
For example, when k = 1 we have

$1 m =Sym™ Q.

For another example, when k = 3, sections of §, . are locally

¢= >af, m=1,
= 2a,fff +bf", m=2,
o= 2auffifc + bfif" +cf', m=3, (1.5)
¢ = Zaufi fifefi + buf ik
+e i+ df 1 m =4,

etc. Here the coefficient functions are holomorphic functions on X, and the
obvious symmetry conditions—such as a; = a, in the second equation in (1.5)—
are assumed satisfied when applicable. In summary:

(1.6) Sections of $, . are locally given by homogeneous polynomials with holomor-
phic coefficients in the variables f!, f, . .., f\¥) of total weight m, where f'" is
assigned weight [.

By considering the highest expression in the f*) that occurs, we see that there
is a natural filtration on the weighted homogeneous polynomials of total weight
m. This gives an intrinsic filtration

S’k—l_m = SGC SI c--C S[m/k]=s’k,m1

PHILLIP A. GRIFFITHS 621



46 Mark Green and Phillip Griffiths

where
S;/S;_, = Sym’ Q‘Ix ®%,

Thus, inductively we have:

—l,m—ki-

%% m has a composition series whose factors are
Sym" Q) ® Sym?Q} ® - - - ® Sym* Q!
where each combination of nonnegative indices satisfying
i+ 24 -+ kip=m

occurs exactly once.

The simplest example of this is the exact sequence
0-Sym?* Q) >4, , > QL —0.
We will now give an alternate definition of $4. m» one that will be useful in our
study below. Given any complex analytic variety ¥ with a C* action and

analytic quotient space Z = Y /C*, we denote the projection ¥ — Z by & and
define a sheaf £” of ©,-modules as follows: For an open set U C Z we set

E"(U)="{¢ €0(&7'(U)) : 9(t) = 179(»)).

The presheaf U~ £™(U) then leads to a sheaf £” on Z. We note that, under the
new C* action given by the standard covering ¢t — ¢ of C*, ™ becomes the first
power of the new sheaf £.

Taking ¥ = J,(X) and Z = P, (X) we have now defined the sheaves £”
upstairs on P, (X). In general these sheaves are not invertible (Dolgacev [8]).
However, for any multiple m = /- k! of k!, the sheaf £™ is associated to a line
bundle. Essentially this is because the action

1 X j—> 1%y
gives a free action of
C*/(kth roots of unity) = C*,

and under a free action the sheaf £ — Z in the preceding paragraph is the one
associated to the line bundle L = Y X ..C over Z.

The restriction of £™ to each fibre of P,(R) & C is Dolgacev’s (m) on the
weighted projective space F, . In particular, by the Theorem in §1.4 of [8] we
have

RIE™ =0 form>0,4>0, 0
RY(E™) =4, ,. is locally free on X. '

As the second equation suggests, and as is clear from the definitions, the
previously defined sheaf %4, m of m-fold jet differentials is the Oth direct image of
£™ — P,(X). In general, by (1.7) and the Leray spectral sequence,

H‘T(X,j»k'm)=H‘?(Pk(X),€’") (1.8)

for all ¢ >0, m > 0. In particular, for m = /- k! giving the space of global

622 SELECTED WORKS WITH COMMENTARY



Two Applications of Algebraic Geometry to Entire Holomorphic Mappings 47

sections H°(X,$, ,,) is equivalent to giving the rational mapping
$m : Pu(X)> PV

(N +1=h%X,%, ,,)) in which each fibre is developed onto a rational image of
F

It is clear that a holomorphic mapping f: X — Y between complex manifolds
induces a pullback

f*HUY, Sy ) > HYX, & ) (1.9)

on jet differentials. Somewhat more interestingly, if f is only assumed to be
meromorphic and therefore perhaps not an actual map in codimension two, the
usual argument invoking Hartogs’ extension theorem shows that the transforma-
tion (1.9) is still defined. In particular,

The spaces H(X, %) are bimeromorphic invariants of complex manifolds.

As a consequence, the space H(X, $+.m) of global jet differentials on any
analytic variety may be defined to be HO(X 44 m) for any resolution X of X.

To conclude this section we will introduce two formal operations on jet
differentials. These will not be used explicitly in our work, but help to clarify the
nature of these objects. The first is simply multiplication. More precisely, the
projection (1.2) induces inclusions

g'k,m Cgk-i-l.m’

and we shall denote the limit | J, 4, ,, by ¢. .- Then multiplication of weighted
homogeneous polynomials gives a product

S"-,m ®3’-.m‘_>3'um+m’

that satisfies obvious algebraic rules.
The second operation is that of differentiation, to be denoted by

Sm P St mer

It is defined as follows: Given a section ¢ of ¢, . and holomorphic arc
f:8- X, we set

& Gies (D@ = = (i ).
For example, in the case k = m = 2 of (1.5),

2“;):; "+ bf",
ab;
¢—za L i+ (2a+ )n; b,

As usual the Leibniz rule
(P¥) =o'¢ + ¢y

1s valid.
A simple but fundamental observation, one that will be discussed in detail in
the next section, is this: We ask whether there may be global sections in

PHILLIP A. GRIFFITHS 623



48 Mark Green and Phillip Griffiths

H%X, % ) that do not ultimately come from ordinary symmetric differentials
(i.e., sections in H (X, Sym™Q.)). In the following section, the answer to this
will turn out to be yes, and as an indication that this should be so we consider
the example of a section

b-Saff. o=a,
of Sym? Q). The derivative

1 aa&' da; aaﬂ‘ 5
=3 =+ =+ L \rrr Mg i
¥=2 3\ 9z, az}. az; f'fffk * a‘»’ﬂff

has a coefficient of f{f" that is symmetric in its indices, but by (1.5) this is not
necessarily the case for a general section of §, ;. This led us to suspect that the
algebra @, ,, H%%, ,) may be larger than that generated by symmetric differ-
entials and their derivatives.

(c) Existence of jet differentials on a surface of general type. In this section we
shall prove the following two results:

(1.10) Proposition. For any smooth projective variety X,
mik+Dn=1

(k1) ((k + 1)n — 1)!

X(X’ 3’&. m) =

LA
X( ( n!) CI(X)"(Ing)n 4 O((]ogk)n—|))

+O(m(k+l)n—2)'
We note that
dimPk(X) =(k+Dn—1,

so that if ¢,(2))" > 0, then by (1.8) the Euler characteristic of $4. m grows at the
maximum rate.

(1.11) Proposition. Let X be a surface of general type. Then for k,m sufficiently
large, the rational mapping
is birational onto its image.

As we shall see in the next section, there are simple surfaces of general type
for which H°X, Sym™ 2)) =0 for all m > 0, so that Jet differentials definitely
give more information than ordinary symmetric ones.

We need to calculate the leading term of x(4, ,,) for a variety of dimension .
First,

ch($i ) = > ch(Sym" Q) ® Sym" 2} ® - - - ® Sym* Q})
W +2i+ - - - +kip=m
(with all ’s integral and > 0), as %« m has a composition series involving exactly

these sheaves. If
() =1 +A)A+A)---(1+1)
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formally, then

ch(Sym'Q}) = > efhitecoERk,

Xp+ -t x,=i

(with all x’s integral and > 0). So

ch($y, m) = > exp{(xy+ - F A + -
xpt o xp+2xy+ oo 4 xy,)
+ s k(g t - A )=m

+ (x]n e o o xkn)An}

X Xin
il
1
fapH T +( Z 4+ -+——2")An)}
m
Xl Xkn
+,..+k(_+...+_}
m m

(with all x’s integral and > 0). This can be approximated by an integral modulo
lower-order terms, so

Ch(g—k m)=m""_' f o ‘f e”‘((}'ll"‘ B 5 T YR SR X TP +mk)dw
Fut o F a2t oo +y)
F oo Akt e =1

+ O(m(k+l)n—2)

(with all y’s > 0), where dw is the element of area dy,,dy,; - - - dy,, pulled back
to the hyperplane y;; + - -+ +y,, + - -+ + k(y) + - - - + y,,) = 1 by the pro-
Jection map. Recalling that our exponential is purely formal and represents a
polynomial of degree n, we have

ch($ ) = mkn=1 f o
yut o Fyat20nt o +yy,)
CHk(at c Hpa)=1

© YA

b o F Pk o R ICY det-O(mEFINY

(with all y’s > 0). By a substitution,

ch($, ) = mlk+Da-1 y”f- f ((}’” _ﬂ 4 e v % ))\l

nt (kt)” et

Yin Yin
+"'+(yln+T+"'+ X )A,,)dp.

+ O(m{k-l- l}n—l)
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(with all y’s > 0), where dy is dy,, - - - dy,,, pulled up by projection. Thus

m(k-i—l]n——! L i
ch W)= e b4
(31‘. ) (k!) )"1|I"' +;{:=] a1+ "'z‘l-q,‘-n qll e 3 q"!
Jai Ykl 9
X(yl]+—2—+---+—k-—) P

Gn
X(yh+ yzz"+~-+);:"') Af - Addy

+ O(m{k‘i-l)ﬂ—-Z)

(with all y’s > 0, all ¢’s integral and > 0). Setting

¥ ); 9
F(g1,---.9,)= f f ()’11+'31+"‘+‘%)

yut o =1

Yan Vin \*

X(y.,,+7+---+ k) dp (1.12)
(with all y’s > 0), we have
(k+1)n—1 F, v
ch(§ )= T P —kuhﬁ""h"“
3 (k') qit - +g,=n - g,

+ O (mEtlin=2 (1.13)

(with all g’s integral and > 0).
To evaluate F (q,, . .., g,), we introduce two notations. Let

Gt TSI sl oot
Pt =i
(with all y’s >0, r, j,, - - - » J- integers > 0, r < p). By calculus,
- it
Heend it )t

The sums

1 . ; _—
S k= g O0</Ai<jy - < j integers (1.14)

if1i/2 ;-
Ht. .. i

(where the summation is over i, < i, if j, =J, and s < ¢, with all /s integers > 1
and < k) grow asymptotically like a constant times (log k)", where » is the
number of j’s equal to 1. In particular,

Su.. k)~ :li‘ (108;‘)’-
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Returning to the expression (1.12) for F (q,, ..., g,), we have
9" q;' - gt
Fo @) =2 T 7 S g®
j].l' Jn‘ - b
x ‘Sf._ | L) jn, qn(k)ljl.l ----- j-.qn(kn - I) (]‘15)
(where in the summation j, , + -+ +, ., =¢,,0< j, </, ,<--- <, g for
v=1,...,n,all /s integers). So
F jos K-S K (L6
k(QIs e 8y q‘,. ((k + l)ﬂ _ l)! dhaee iy j.b“( ) S AP -"."»1'4( ) ( * )

with the same conditions on the summation indices. Thus

l n n=-
F(qrs---s9)= ey (logk)"+ O((logk)"™")
since the only way (log k)" can occur is when all of the j’s are 1. So
)\iq. ce s A

m(k-l-l]n—l

(k) ((k + D)n

h($) = —yr Goet)” | 3

| S 1
g+ - +g,=n gy~ G-
¢'s integers >0

+O0((logk)"™") + O(mt*+Hn-2)
mk+ =1

T (KDY (k + n - 1)!

xS a0 ogh” + 0((ogk)""))

n!

+ O(m(k+ lynm —2)‘
By the Hirzebruch Riemann-Roch theorem,

pplk+Da—1

(k)" ((k + 1)n — 1)!

X(g’k‘ m) =

Bt .
x( ( n!) c)(x)"(log k)" + 0((Iogk)""))

+O0(m**rhn=2), (1.17)
which proves the desired result on the leading term of x(%, ,.).

Returning to the explicit formula (1.16) for F (q,, ..., g,), we can calculate
the leading term explicitly for low dimensions. The leading terms are the
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following combinations of Chern numbers, where ¢, denotes c(Q)):

n=1 : Cy,

(kt)?
n=2, m ((S1, (k) + Sy(k))ed — Sy(K)cy),
n=3, : ((Si.1.1(K) + Sy, (k) + S(k))c?

(K!)’(3k +2)!
+(82,1(k) = 285(k))cicy + (Sy(k) — S5 1(k))c3).

In particular, for surfaces the leading term is

1
k=1, -3—!((:';’-—@),

:
4. 3!

(7(.‘? - 5(:2),

1
k=3, 5 (85¢f - 49c,).
For surfaces of general type, we have the result of Bogomolov [2]:

(1.18) If a section of
H(X,Sym" ©, ® Sym0, ® - - - ® Sym* O ® K(i* - +i/2),
i+ -+ even,
vanishes at a point of X, it vanishes identically.
Thus if i, + -+ - + i, is even and g<@y+---i)/2,
HOX,Sym" 0, ® - - - ® Sym*©, ® K§ ) = 0.

By squaring, we see we may drop the hypothesis that i) + - - - + i, is even. Then
using Serre duality,

HY(X,Sym" Q. ® - - - ®Sym*2,) =0 fori;+ --- +i, >2. (1.19)
As §; ,, has a composition series involving Sym QL ® - - - ® Sym’ Q) with

iy +2i,+ -+ - + ki, = m, we infer that

(1.20) H*(X, 4, ,,) =0 for m> 2k, k > 1, and for X a surface of general type.

Since

X(g'k, m) = hO(X’ 3"&. m) i h I(X’ g’k. m) + hz(x’ g’k. m)’
we conclude that for a minimal surface of general type

hU(X, gk.m) > Amn[k+|]—l £ O(Mn(k+l)—2), A >0’

for k sufficiently large.
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From a result of litaka [18], it follows that

(1.21) For X a surface of general type, if
i+ 2 ) 28)
= =il > =)e>0,

(1<f<jck‘f lcEi:s:kiz ' 2 )7
then
bm 2 P (X) 2 Py

is birational to its image for m sufficiently large.

53

Less specifically, the hypothesis on the Chern classes always holds for &
sufficiently large. This follows because c(R)) >0 for a minimal surface of

general type.
(d) Examples

(1) Smooth hypersurfaces in P,. Let X be a smooth hypersurface in P, of

degree 4. The main facts are:

(1.22) HYX, Sym* Q") =0 for all k > 1 if n > 3.

(1.23) ¢,  isa birational embedding for m sufficiently large, for X a surface and

d > 16.

To see (1.22), which is due to F. Sakai [28], begin with the exact sequence

0-0-> 6 0(1)»6, >0

n+1

and its analogue

0—- @ 9k-1)— B 0(k)—>Sym"8,,_—>0.

k—: k
(u+k l) (n-l—k)

Dualizing,

0->Sym*Q, > @ O(—k)»> @ o(l-k)—0.

()
Thus
H(X,Sym“Qp| ®0(/))=0

unless either

(H)i=0,/-k>0,0r
@i=n—1,d-(n+ )+ k—1>0.

From this and the sequence
0-Sym*~'Q} |, ® 6(—d)—>Sym* Q}, |, > Sym* 2}, -0
we conclude
H'(X, Sym* 2, ®0(/)) =0
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unless either

M i=0,1-k>0,
@ i=n—2,k—(n+2)—150,o0r
@ i=n—lLd-—(n+1)+k—-130.

For / = 0 we conclude
H(X, Sym* Qy)=0.
To see (1.23), the exact sequence
06,6, |,>0(d)—>0
implies
(1+¢(@x) + cx(@))(1 + dH) = (1 + H )",
where H is the hyperplane class. Thus
ci(Ox) = (d - 4)'d,
(By) =(d*—4d + 6)d.
Therefore
() — ex(2}) = (10 — 4d)d,
Tc(Q)) — 5¢y(R) = 2(d* — 184 + 41)d.

Thus ¢, _ cannot be a birational embedding—indeed, we have seen there are no
symmetric differentials—while ¢g, .. 1s a birational embedding for large m when
d > 16.

(2) Subvarieties of Abelian Varieties. These will be discussed at length in Section
3 when we give the proof of Bloch’s conjecture. Here we will merely assert
without proof that:

(1.24) For X, C Ay, if k> n/(N—n) and X is not ruled by subtori, then
P (X) *2>P,, is a birational embedding for m sufficiently large.

For X a smooth surface, from the formula
(1+¢,(X) + (X ))(1 + ¢ (Ny ) + c(Ny)) =1

we conclude that
cf(X)—cz(X)=0, N =3,

and with a little geometry that
(X)) —c)(X)>0, N >3.
Thus, for X, C 4,, l-jets are not enough, while 2-jets are. For X, C A4,,
N > 3, l-jets are enough.
2. Metrics of Negative Curvature from Jet Differentials

(2) The Ahlfors lemma. The Ahifors lemma is central to differential-geometric
methods of studying holomorphic mappings, recurrently surviving all changes in
viewpoint. We will use a variant of it here.
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Definition. Let X be a complex space. A jer pseudometric is given by a function
| |:J(X)—>R*
that is continuous and smooth except when it is zero, and satisfies
lgl=121-1jl  (jEL(X) tECH).

Here the action of C* on jets is by reparametrization as discussed in Section 1
(a). Intuitively, | | assigns a length to kth-order infinitesimal arcs in X. In local
coordinates in a neighborhood consisting of smooth points on X a jet
pseudometric will be given by

D@ = F(£i(2) - - - fu(2), - - [z - - - f§22)),

where F(ff,...,f, ..., f{®, ..., f{®) is a nonnegative function, smooth ex-

n

cept when zero, that satisfies a suitable weighted homogeneity condition.

Definition. The jet pseudometric | | has holomorphic sectional curvatures < — A
(A4 > 0) on discs if for any holomorphic mapping f: A— X and point x € f(A) we
have at x either |/, (f)|=0or

V=183log| . (f) > 4] (f)P- (2.1)

(Compare this definition with Wu [29].)
We remark that, multiplying | | by 4 ™', we may always make the constant in
(2.1) to be —1.

EXAMPLES
(i) The standard example is the Poincaré metric
o) lae] = L,
L=zt

it has constant holomorphic section curvature — I.

(i1) In [10] Grauert and Reckziegel introduced negatively curved Finsler metrics
(cf. also Cowen [5]), given by a nonnegative function Fi (x,£) on the tangent
bundle satisfying

F(x,t§) = |1|F(x,§) (e T (X)1eC).
A useful remark they made is that the sum of two negatively curved Finsler

metrics is again negatively curved; the same is true for jet pseudometrics
having holomorphic sectional curvatures < — A4.

(i) The Kobayashi metric | |, is the pseudometric on J,(X) defined by

0
/()
where the inf is taken over all holomorphic mappings f: A — X that satisfy
f(0) = x and f.(3/3z), = a¢, a € C* (cf. Kobayashi [20]).

If we have f: A — X with f(0) = x and f.(3/3z), = £, then setting f.(2)
= f(z/r) gives f, : A— X with £ (0) = x and (f)-(3/32zy) = r&. It follows that

|, = inf
f
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|€|, = O in case there is an entire holomorphic curve passing through x in
the direction £ € T,(X). For X compact the converse is due to Brody [3].

(iv) Let Hy, ..., H,,, be a collection of n + 2 hyperplanes in general position
in P". There has been an extensive study of the position of a nondegenerate
holomorphic curve in P relative to these hyperplanes (cf. the introductions
to Cowen and Griffiths [6] and Green [11]). In particular, for X =P" —
\UsLoH, a classical theorem of E. Borel says that an entire holomorphic
curve f: C— X must lie in a P"~'. The corresponding defect relations were
established by H. Cartan and Ahlfors.

In Cowen and Griffiths [6] there is a proof of these defect relations and
Borel’s theorem using what amounts to a negatively curved jet pseudometric on
X; cf. (6.3) and (6.4) on p. 132 of that paper. Comparing (6.3) and (5.13) one
sees that for n » 2 higher derivatives enter in an essential way in this metric. In
fact, the pseudometric vanishes at a point in case the curve osculates to high
order to a hyperplane at that point, and it vanishes identically exactly when the
image f(A) lies in a P*~".

As with ordinary metrics, the basic fact concerning jet pseudometrics is the

Ahlfors lemma for jet pseudometrics. On a complex space X we let | | be a jet
pseudometric that has holomorphic sectional curvatures < —1 on discs. Then any
holomorphic mapping f:A—> X is distance decreasing relative to the Poincaré
metric; i.e.,

(N)(@)] < p(2) (22)
for all z € A.
Proof. 1f not identically zero, the pseudometric L (FX2)|* |dz|* has Gaussian

curvature < — 1 at the points where it does not vanish. The result now follows
from the usual Ahlfors lemma (Kobayashi [20]). O

To state a corollary we let (x,£) € T(X) and denote by J,(X ), ¢ the set of
all jets j € J,(X), that project onto £; i.e., the linear part of j is £.

(2.3) Corollary. Let | | be a jet pseudometric whose holomorphic sectional curva-
tures on discs are < — 1. Then the Kobayashi length satisfies
€l > _ inf - |jl.

JEH(X )z g

The proof is immediate from the Ahlfors lemma and the definition of | |,.

(2.4) Corollary. Let | | be a jet pseudometric on J,(X) having holomorphic
sectional curvatures < —1 on discs. Then if f:C— X is an entire holomorphic
curve, then

lje(x)(2)| = 0.
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(b) Construction of negatively curved pseudometrics from jet differentials. We will
now show how negatively curved jet pseudometrics may be constructed by
having enough holomorphic sections of a suitable line bundle.

(2.5) Proposition. Let X be a projective algebraic variety and E— P,(X) a very
ample line bundle. If L, . .., t,, is any basis for HYP(X),E) and s, . . ., s,
any basis for H(P,(X),L™ ® E "), then Jor a suitable constant A >0 the jet
pseudometric

1/m
Ul = 4( Sl )F)
L a
has holomorphic sectional curvatures < —1 on discs.

Proof. Let U C P,(X) be an open set over which E and L are trivial, and
suppose that f: A— X is a holomorphic mapping such that j, (f)(z) € U for all
z € A. Then using these trivializations,

(U (N) = u,(2),
5:U(IN2) = v(2)
are holomorphic functions of z and

DR = A(She@ur)

Assuming that | j, (f)|* is not identically zero, the (1, 1) form

(=T 0810gju (1)) = L1 a3 tog (Sle()P) + =L 6B 10g(Su, (1))
_a B

is intrinsically defined—i.e., does not depend on the trivializations used. Each of
the forms « and B is nonnegative; and 8 has the following geometric interpreta-
tion: Let ¢, : P,(X)—>P" be the projective embedding induced by the sections
gy .-,y and
w= ¢} (Fubini-Study metric on P™).

If we denote by

Jue 18 P (X)
the canonical lifting of f: A— X given by f,(z) = j,(fXz), then

B=fi(w). O

Next we need to know that:

(2.6) B(2) =0 = j, . (fNz) is a constant jet.

Proof. We shall prove that the right-hand side is equivalent to the differential of
fi vanishing at z. Taking z = (0) and a local embedding of a neighborhood of
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f(0) in X as a subvariety in an open set in C", we write
f Jj+1
= Q) 2L 4 fU+Nggy 2
f(2) f()j! F ()(f'H)!

where f2(0) # 0. If j < k + 1 and if the differential of j (f) € P(X) is zero at
z =0, then this means that

L (). o= 1 (O).

The right-hand side is the reparametrization of the jet Jx(/)0), and all terms of
order < j are zero. But the left-hand side has a nonzero term of order j — 1,
which contradicts our assumption j < k + 1.

Now both of the mappings

+ - - -

2 B(2),
2= je ()

are quadratic with respect to a reparametrization, and consequently the ratio

(NP
p(2)
is locally bounded from above on the projectivized tangent bundle of P, (X).

Since it is intrinsic and X is compact, this ratio will everywhere be < B for some
constant B. This implies that

V=1 ddlog|j, (/)P > —E— > ﬁ (DI

for any holomorphic mapping f: A— X. Adjusting constants yields the proposi-
tion. O

(2.7) Corollary. Consider the map
$um  P(X) > P

defined by the linear system |L™| on P (X). Let B, ., be the union of the base
locus of ¢, = and the points j € P,(X) such that dim(¢ m ($,-(7) > 1. Then there
exists a jet pseudometric on P,(X) with holomorphic sectional curvarures < — 1 on
discs and vanishing at most on B, ..

Remark. Noguchi [24] has a similar observation in the case of symmetric
differentials.

Proof. Let E— P,(X) be a very ample line bundle. It will suffice to show that
for sufficiently large /, the base of the linear system L™ ® E | is contained in
B, ..

By blowing up we may assume that the base of |L™| is a divisor F on the
blown-up variety P,(X), and we set L = L™ ® F~!. Then

¢; P (X)->PY
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is a holomorphic mapping that is finite-to-one outside the total transform ﬁk‘m

of B, ..
Given j € P, (X) — B, ,,, we may choose a divisor D € |E| such that

o7 '(92()) € D,
where D is the total transform of D. If we choose a hypersurface of sufficiently
high degree / in PV that passes through ¢;(D) but does not contain ¢:(j), then
we obtain a section of L' — D on P,(X) that does not pass through /. Projecting
its divisor down to P, (X) gives a divisor in |L" — D| that does not pass through
j.

Combining Corollary 2.4 with Corollary 2.7 gives the

(2.8) Corollary. Let f: C— X be an entire holomorphic curve with canonical lifting
fi : C> P(X). Then, with the above notation,

K€Y CUB, .

Remark. Observe that the right-hand side of this inclusion is defined purely in
terms of the geometry of the linear systems |L™| on P,(X). These are in turn
described by the jet differentials on X.

3. Proof of Bloch’s Conjecture (Theorem I)
(2) Proof of Theorems I and I'. We begin by establishing

Theorem I'. Let X be an analytic subvariety of a complex torus A. If X is not the
translate of a subtorus of A, then any entire holomorphic curve f:C — X lies in a
proper analytic subvariety of X.

Remark. By induction, then, the image curve f(C) will lie in a proper subtorus.
In this connection, when A is a simple abelian variety an elementary proof of
Bloch’s conjecture has been given by one of us (cf. Green [12]).

Proof. Writing A = C" /A where A is a lattic in C" and using the monodromy
theorem, we may assume that any holomorphic mapping f:A — X has been
lifted to C". We shall continue to denote this lifting by f, and remark that it
is unique up to translation by a constant vector in A. Thus f(z)=
(fi(2), . . ., fu(2)) where the f,(z) are holomorphic functions.

We shall also use the notation

TGS A O, A,
= (fs o £)

(here, the index i is thought of as running from 1 to n) for the indicated global
coordinates on the jet spaces J, (X). Equivalently, u is the composite map in the
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diagram u

J (X )T (A) = A XCN > C*V,

If we take any basis P, ..., P,, for all polynomials with constant coefficients
in the indeterminates f{, ..., fi;...; fi®, ..., f{* that are homogeneous of
total weight m when £ is assigned weight /, then the P, form part of a basis for

HYP(X),L™) = HY(X, %, ).

Using these to define a mapping U, to projective space, we will have a diagram

Prm PM’
B |
Un, PM

where ¢, » is the mapping defined by the complete linear system [L™| and the
vertical arrow is a linear projection. For m = k! the mapping U, involves
(f?y"/! for all i and I < k, and consequently U, has no base locus. Moreover,
for this same m

Un(G) = Un(J2) = u(j))=u(jp)
< h=j+ta,
where j,, j, € J,(X) and j, + a denotes the translation of j, by a € C". Summa-
rizing: If the jet j lies in the subvariety B, ,, (cf. Section 2), then
dim{a€ 4 :jES(X)NJ (X +a)} > 1. )
Now let f: C— X be an entire holomorphic curve. By Corollaries 2.7 and 2.8

to Proposition 2.5, j,(f) € B, , for all k and /. We define the sequence of
complex-analytic varieties

Ve(f)={a €4 : ji(f)0) EJ(X) N J (X + a)).
These form a nested sequence
iinev(fcvf)c:---
that eventually stabilizes at a variety V. By power series,
a€V o f(C)CTXN(X+a).
On the other hand, by (*) above
dim¥V=dim{a€4: f(C)C X N(X+a)} >l
Now, either X N(X +a) is a proper analytic subvariety of X for some
a € A — {0}—in which case we are done—or else
X=X+a forallae V.
Assuming this alternative holds, we note that
{a€ 4 X=X+a}=8B
is a subgroup of 4 that must have positive dimension; in this case we shall say

that X is ruled by subtori. _
Letting B°C 4 be the identity component of the group B and setting A =

636 SELECTED WORKS WITH COMMENTARY



Two Applications of Algebraic Geometry to Entire Holomorphic Mappings 61
A/ B°, we have a diagram of entire holomorphic mappings
,’f{",_,, XCA
T
f\)
where X is not ruled by subtori. Applying the argument thus far, if X is not a
point, then f(C) lies in a proper analytic subvariety Z of X, f(C) lies in

Z =x"%(Z), and we are done. If X is a point, then X is a subtorus, and this
contradicts our initial assumption. [J

C

Xced

Theorem I is an easy consequence of Theorem I'. If X is any algebraic variety
with irregularity ¢ > dim X, then we denote by 4 the Albanese variety of X and
by

a:X—>A

the standard map. Setting a(X') = Y, Y is not a subtorus of 4, and consequently
the image of
acf:C>Y

lies in a proper subvariety of Y. The same must be true of the image f(C) C X.

Remark. The same argument applies whenever X is a compact Kihler manifold
or a Moisezon space.

(b) Some remarks on analytic subvarieties of complex tori. We want to make
some general observations about subvarieties of abelian varieties, and then in
the following section shall give some related remarks on how our proof com-
pares with the argument of Bloch and Ochiai.

Given an analytic subvariety X C A of an abelian variety, the most obvious
way to study its geometry is via its Gauss mapping

y:X—=>G(n,N). 3.1
Here, y is defined at the smooth points of X by
Y(x) = T.(X)
= translate to the origin of the tangent space at x € X,
and is then extended to all of X as a natural mapping (see Griffiths [14] for
further discussion). Actually, for the purposes of this discussion the singularities
of X are not that essential, so the reader may either assume X is smooth or
replace X by its Nash blowup on which y is everywhere defined [14]. By
definition
T*(X)=~v*E,
where E— G(n, N) is the dual of the universal subbundle.
The first step is to analyze the case when y is degenerate in the sense that

dim y(X) < dim X. In this regard there is a classical structure theorem which
may be found, e.g., in Section 4 of [15]:
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(3:2) Given X C A, we may pass to a finite unramified covering of A and make q
translation to have

A=A"X A",

X=4"X X",
where A', A" are abelian subvarieties of A, X" C A" is an analytic subvariety
whose Gauss mapping is nondegenerate, and the Gauss mapping of X has fibres
A" X {x").

Briefly, the fibres of y are translates of abelian subvarieties that give a ruling
of X.
We should like to make two further observations, of which the first is this:

(3.3) For an n-dimensional subvariety X C A of an abelian variety, the Kodaira
number

K(X)=n
if, and only if, the Gauss mapping of X is nondegenerate.

In (3.3) X is assumed to be irreducible, but it may have singularities. We
observe that we have a diagram

X —>G(n,N)—L s p¥-1

b, o o
K PFS 1
where p is the Pliicker embedding, ¢, is the canonical map of X (py= h™%(X)),

and = is a linear projection. From this it follows that
dimy(X)=n = «x(X)=n,
and the converse is provided by the structure theorem (3.2).
Our second remark is that we have always taken A to be an abelian variety as

opposed to just a complex torus. There is no particular reason for this, and there
is also no essential loss of generality, because of the following:

(3.4) Suppose X C A is an analytic subvariety of a complex torus that is not
contained in a subtorus, and assume that X is not ruled by subtori. Then A is an
abelian variety.

Proof. If X is not ruled by subtori, then the Gauss map of X is nondegenerate.
Since there is an equidimensional mapping of X to the projective algebraic
variety y(X), X is a Moisezon space. The Albanese variety Alb(X) is then an
abelian variety, and there is a diagram of holomorphic mappings

Alb(X)

X

ey

A
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where the vertical arrow is surjective, since X is not contained in an abelian
subvariety. Being a quotient of Alb(X), 4 must be an abelian variety. [J

Returning to our general discussion, we assume that the Gauss mapping (3.1)
is equidimensional. Then one might think that T*(X), being generated by its
global sections and pulled back from the universal bundle by a nondegenerate
mapping, might be close to being ample. For example, we might hope that
Sakai’s A-invariant (cf. [28])

A= Trdeg{- @ HO(X,Sym™ QL } s
mz0

would achieve its maximum possible value max(n, N — n). In this regard we first
observe the

(3.5) Lemma. The universal bundle E— G(n,N) is not ample if n > 2. The
transcendence degree of @, oH%G(n, N);Sym™E) is N.

Proof. We denote by P = P(E*) the projective bundle of hyperplanes in E, by
04 (1) the tautological line bundle over P, and recall that

H(P,0,(m))= H%G(n,N),Sym™ E)
= Sym™(C*"*). (3.6)
Moreover, by definition E is ample if, and only if, 0,(1) is ample on P.
We may realize P as the subvariety of G(n, N) X P¥~! defined by incidence:
Fe={lA,p) 2 pEAVC GlnNYyxPF-1 3.7
Since H%O, (1)) = C"*, the mapping given by the complete linear system
|©p (1)] is projection on the second factor in

y - N

.

G(n,N)
This mapping is everywhere defined and has fibres
7 (P)=(A:pEA)
=G(n—-1,N-1).
It follows that
Op(1) = 71 Opu-(1)
cannot be ample if n > 2. By (3.6),

GBUH (0p(m)) = @ Sym™(C")*

ma0
=C[z,,...,zN]
has transcendence degree N, and for n > 2
N<n(N-nr)+n=dimP+1. O

Because of the lemma we have the possibility that T*(X) may not be ample,
even if y is an embedding. To determine what A is we consider the tangential
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variety
T(X)CP N=l

defined to be the union of the projectivized tangent spaces PT_(X) as x varies
over X. Alternatively, in the diagram

e s

Pl(X) '.f.; P ”1; [IJN-I

X —5G6(mN)
the tangential variety is the image of = = 7, © y*. It follows that
A=dimr(X)—n+1,

so all we can easily say is that A > 1. In general the behavior of 7(X) is not well
understood, especially when dim X > 4 (cf. Section 5 of Griffiths and Harris
[15]), but in any case T*(X) cannot be ample when codim X < dim X.

(c) Some observations about jet differentials associated to subvarieties of abelian
varieties. Our approach to Theorem I’ differs from Bloch and Ochiai’s in two
respects: we substitute negative-curvature arguments for Nevanlinna theory, and
we make a different geometric computation.

In fact these are related. The most naive way to use negative curvature is via
the observation that holomorphic sectional curvatures decrease on submani-
folds. The flat Euclidean metric on an abelian variety 4 = CV /A induces on’
any subvariety X C A4 a metric whose holomorphic sectional curvatures K(£) are
< 0 (here £ € T,(X) is a tangent vector). The condition K(£) <0 is closely
related to the tangential variety having dimension 27 — 1. More precisely, from
Section 4 of Griffiths and Harris [15] we have:

(3.8) If 1I(£, ) denotes the 2nd fundamental Jorm of X C A, then for § € T(X)
I[§§)=0 & K@) =0.

On the other hand, if II(£, £) % 0 for every nonzero tangent vector, then the
linear system [II| has no base points, and it follows from Section 5 of [15] that
the tangential mapping

T:P(X)—> PN (39)

is equidimensional.

However, even if 7 is equidimensional, it may have a branch locus Or, wWorse
still, blow down a subvariety of P(X). For example, if C,, C, are curves in A4
and we consider the translation-type surface

X=C+GC={p+p|pEC,pEC),

then for each (p,£) € T(C)), the curve E = {(p.£) X(gq,0)|g € C,} in P(X)
collapses to a point under 7. In fact, the union of such E’s projects down onto
all of X. The main hitch in completing Bloch’s argument was to get these
blown-down varieties under control.

Moreover, in general the tangential mapping (3.9) will not be equidimensional
(e-g., if codim X < dim X), and apparently the conclusion to be drawn is that it
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is necessary to go to higher-order jets to detect the geometry necessary to force
negative curvature.

As mentioned in the introduction, jets already appeared in the original paper
of Bloch in 1926, as well as in the work of Ochiai [25]. Their main computation
centered on determining the branch locus of the mappings

U, :J (X)—>C* (3.10)

that we encountered in the proof of Theorem I'. (We remark that we only
needed the exceptional locus of u,, and not the full branch locus.) We have
found a geometric interpretation of their computation that may illuminate what
is going on. Given a line L through the origin in C", we define the Schubert
cycle
Z,={AEG(nN):LCA}.
If we consider the Gauss mapping
Yy:X—>G(n,N),
then we note that
y~'(=,) = projection to X of the fibre 7'(L) of the tangent mapping (3.9).

Now, rather than stop with the Gauss mapping alone, we extend to k-jets to

obtain
Yi (X)) S (G(n, N)). (3-11)

The main computation in Ochiai [25] may be expressed by saying that the
branch locus B, of the mapping (3.11) satisfies

B ) ¥ I(Jk(z:L))U""k_l(Xsmg)'
LepN!
where 7, : J,(X)— X is the projection. As a consequence we have:

(3.12) For a holomorphic mapping f:A— X that satisfies j,(fXz) € By for all k
and z € A, one of the following alternatives must hold:

J(B) © Xiing,
f(Ad)cC Yy (=) forsomelL € Pyl

Using the interpretation (3.12), we may complete Ochiai’s argument. Alterna-
tively, we may use the jet forms to construct a negatively curved jet
pseudometric on J,(X) — B,, which is the approach we have followed in this

paper.
Part B. Measure Hyperbolic Algebraic Surfaces

4. Proof of Theorem II

(a) Reduction to the K3 case. We first recall the definition of the Kobayashi-
Fisenman intrinsic volume form ¥ defined on any n-dimensional complex
analytic variety X (cf. Kobayashi [20]). Let

n 4y—1 dzja’z_j
e ] e
=t (1-1z/’)
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denote the Poincaré volume form on the unit polycylinder A" in C”. Given a
smooth point x € X, we consider all holomorphic mappings

f:A"> X
that satisfy f(0) = x and J(0) 0, where J;= A’f. is the Jacobian determinant
of f. Then by definition

¥(x) = inf (/7).

To better understand this definition, if ¥(x)=0, then we must have a

sequence
R . ¢
of holomorphic mappings that satisfy
SO =x,  |7,(0)] > k.
If we let
A%k, 1) ={(z1, - -5 2) € C" ¢ gyl <K |23) < 1o [z, < 1}
and replace z, by z,/k, then we obtain a sequence of holomorphic mappings
& A"k, D> X
satisfying
&O)=x, |/ (0> 1L
The analytic variety X is said to be measure hyperbolic in case ¥ is positive
outside a proper subvariety E of X. In this case, for any point x € X — E there

is an upper bound on the size of polydiscs A"(k, 1) that can be mapped into X
sending the origin to x and having Jacobian > 1 there. In particular:

(4.1) If there is a holomorphic mapping

f:A%(o0, 1)> X
whose image contains a Zariski open subset (actually, any open set will do), then X
fails to be measure hyperbolic.

Turning to the conjecture of the introduction, we may assume that X is a
smooth projective variety and recall that X is said to be of general type in case,
for some m > 0, the rational map

Pk (X PV
defined by the pluricanonical system |mK,| is equidimensional—i.e, the image

bnx(X) is an n-dimensional algebraic subvariety of P™. Equivalently, the
canonical ring

@ HO(’"KX )

m>0
should have maximal transcendence degree n + 1. It is known that
X general type = X measure hyperbolic

(see Griffiths [13] for the case m = 1, and Kobayashi and Ochiai [21] for the
extension of this idea to the general situation).
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For any variety X the Kodaira number k = «(X) is defined to be the maximal
dimension of the pluricanonical images ¢, ,(X) (m > 0). For algebraic surfaces
that contain no exceptional curve of the Ist kind the classification theorem
(Griffiths and Harris [17, p. 590]) gives the following list:

(@) k= —1 = X is P? or is ruled by P"s.

(b) k=0 = (1) X is a K3 surface ifg=0andp =1,
(i)) X is an Enriques surface if g = Pe =0,
(i) X is a hyperelliptic surface if g = I,
(iv) X is an abelian surface if g = 2.

(c) k=1 = X is an elliptic surface.

(d) k=2 = X is of general type.

The surfaces of class (a) and (b)(iv) clearly fail to be measure hyperbolic (cf.
(4.1)—in these cases there is a nondegenerate mapping of all of C? to X). To
treat the remaining ones we shall utilize the

(4.2) Lemma. If on a surface X there is an algebraic family consisting of co'
algebraic curves whose general member is either rational or elliptic, then X fails to
be measure hyperbolic.

Remark. We do not require that the general curve £ in our family should be
smooth—to say that E is rational or elliptic means that the genus of its
normalization should be zero or one.

Proof. We may describe these curves as being a family {E,},cp where B is an
algebraic parameter curve. If a generic E, is rational, then there is a finite
covering B of B and a surjective rational mapping

f:BxP'>X. (4.3)

By deleting the finite set of points Z in B over which f may not be defined as a
holomorphic mapping and setting

B*=B-Z, f*={fl,,
we arrive at a holomorphic mapping

f*:B*xX P'>X

whose image is Zariski open in X. Finally, passing to the universal covering of
B* gives a mapping of C X P! (C = A, C, or P') to X with Zariski dense image,
and we may apply (4.1).

If a generic E, is elliptic, then removing a finite set Z from B we may assume
that for each 1 € B* = B — Z the curve E, is irreducible and the normalization
E, is a compact Riemann surface of genus one. We also assume that the
universal covering of B* is the disc A and the E, have nonconstant j-invariant—
otherwise the argument is similar but easier. The covering A— B* will be
denoted by z — 1(z), and we may then write

Er(z) = C/ Az
where A, is a holomorphically varying lattice in C. More precisely, enlarging Z
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to include all # where E, has automorphisms, we may lift the mapping

B* — {moduli of elliptic curves}
to a holomorphic mapping

A5 {upper half plane)

such that
A, ={m+ nr(z)}

z m,neZ’

We then obtain a holomorphic mapping
f:AXC—>X
defined by
fz,w)y=we C/A,;

by construction the image of fis Zariski dense in X and we may apply (4.1). O

We again emphasize it is not required that the general E, be smooth.
Also, if we observe that on A X P' any holomorphic section of Sym™(Q2, p2)
must be identically zero, then from (4.3) we have the corollary:

“4.4) If HmK,)#0 for some m >0, then any rational curve on X must be
isolated. '

More precisely, for any holomorphic mapping

f:AX P'5X
the Jacobian J, must be identically zero.

Using the lemma, we see that elliptic surfaces, hyperelliptic surfaces, and
Enriques surfaces—these all have elliptic pencils—fail to be measure hyperbolic.
To establish the conjecture for algebraic surfaces it will suffice to show that any
algebraic K3 surface fails to be measure hyperbolic, and again using Lemma 4.2,
this would follow from the assertion:

(4.5) On any smooth algebraic K3 surface X there are o' elliptic curves.

As mentioned in the introduction we shall give a construction of co' curves
on any X that we can show to be elliptic for the first three families of K3
surfaces, and in general serve to reduce the conjecture to establishing a certain
technical algebro-geometric point to be explained below.

(b) Informal discussion of the proof. In this subsection we shall discuss the idea
behind the proposed construction of the co! elliptic curves on any algebraic K3
surface X. We recall (Mayer [22] and Saint-Donat [27]) that these surfaces fall
into a sequence of irreducible families %, (n > 1) that may be described as
follows:

(4.6)

(i) The surfaces X € F, are 2-sheeted coverings X — P? branched over a smooth
curve of degree six.
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(ii) The surfaces X €, (n > 2) are nondegenerate smooth surfaces X C P"*'
that have degree 2n and P, # 0.

(i) If X €9, then the genera! hyperplane section C € |0, (1)| is a smooth
canonical curve of genus n + 1 (if we take 0, (1) to be f*Opx(1), then this is
also valid for n = 1).

We recall that for generic X €, the Neron-Severi group Pic(X)® Q is
generated by the class of a hyperplane section. Since a smooth rational or
elliptic curve E has respectively -

E*= -2, E*=0,
it follows that on a general algebraic K3 surface there are no smooth curves of
genus 0 or 1 (actually, for generic X € &, there are not smooth curves of genus
< n), so the curves we are seeking in order to establish (4.5) must be singular.

It is also the case that for generic X € ¥, there are no curves other than those
cut out by hypersurfaces in P"*' (cf. Saint-Donat [27]). If VCP"*' is a
hypersurface of degree d such that

C=VnXx
is smooth, then the genus g(C) = d?n. 1t follows that if on any algebraic K3
surface X € F, we are to find a curve of genus < n, then we should look for
those of the form

C=HnNX
where H € P"*'* is a hyperplane that fails to meet X transversely—i.e., H
should be a tangent hyperplane to X

Now the tangent hyperplanes constitute the dual variety X* C P"*'*. At a
smooth point of X* the corresponding hyperplane H is simply tangent to X at
one point, and consequently the section C = H N X has one ordinary double
point (= node), and the genus of its normalization is g(C) = n. Suppose next
that H is simply tangent at two points; then C = H N X has two ordinary nodes
and g(C) = n— 1. In general:

(4.7) If a hyperplane H is tangent to X at k distinct points, then the corresponding
section C = H N X has normalization C with genus g(C)<n—k+ L

Our main result is the following:

(4.8) Proposition

(i) For any algebraic K3 surface X € ¥, there are oo ~**! hyperplanes that are
tangent at k points.

(i) If n=1or 2 or n=3 and X is generic, then these k points may be taken
distinct.

It is clear that Theorem II follows from Proposition (4.8), (4.7), and Lemma
(4.2). Moreover, the full conjecture of the introduction would follow if part (i1)
of (4.8) were established for all n. As we shall presently discuss, there are
compelling reasons that this should be the case, but as will also be seen during
the proof of (4.8) in the next section, there is one technical issue dealing with the
precise meaning of “k-fold tangent point” that we are unable to overcome.
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The idea behind the proof of Proposition (4.8) is simply the following count
of constants:

(4.9) The dimension of X* is n, and it is “k conditions™ that a hyperplane H is
tangent to X ait k points.

Obviously, there are several matters that require extreme caution here, the
most serious of which is that the dual X* may not have any k-fold points when
k = n. This particular difficulty will be overcome in the next section. The next
most serious question—and the one on which we are stuck— is just how to
control the genus of the section H N X where H is a k-fold tangent hyperplane
but where the points of tangency may not be distinct. This much, however, can
be said:

(4.10) If there are " hyperplanes H such that a general one is tangent to X at n
distinct points, then these are points of simple tangency.

Proof. For the corresponding section C = H N X we consider the normalization
50 of any irreducible component C, of C. Then the genus g(éu) < 1, with
equality holding if, and only if, C; = C and the points of tangency are simple.
The result then follows from (4.4). O

The intuitive reason, then, why (ii) in Proposition (4.8) should hold for all n is
that in any case by part (i) there are oo’ n-fold tangent hyperplanes, and if a
general one of these were not simply tangent at n distinct points, then (4.4)
would be violated.

(c) Existence of n-fold tangent hyperplanes to a K3 surface. In this subsection we
shall establish (i) in Proposition (4.8). It is instructive to begin by discussing the
pitfalls in trying to directly rigorize the naive dimension count (4.9).

For example, consider the statement: “It is one condition that a hyperplane is
tangent to X.” What this means is that the dual variety X* is a hypersurface in
P"*'*_ Although this is generally true, there are certainly smooth nondegenerate
varieties ¥ C P"*! for which V'* fails to be a hypersurface (cf. Section 3 of
Griffiths and Harris [15]). However, for any smooth surface or any variety X
whose Kodaira number «(X) > 0, the dual X* is a hypersurface [15, Section 3].
Both reasons are applicable in our present case.

A more serious objection concerns the singular locus of X*. For example, the
hyperplanes tangent at two distinct points occur on the double locus of X*, and
there are varieties for which X* is a smooth hypersurface (e.g., nonsingular
quadrics) or, even worse, X* may be a hypersurface whose singularities occur in
high codimension (e.g., according to Donagi [9] the dual of the Pliicker image of
the Grassmannian G(3.6) in P'° is a hypersurface whose singularities occur in
codimension five). About all that can be easily said is this:

(4.11) If the dual X* C P"* of an algebraic variety X C P" is a hypersurface, and

if there is one hyperplane that is tangent at k distinct smooth points of X, then there
are at least oo™ ~* such k-fold tangent hyperplanes.
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This is because if there is one point in P¥* that lies on k distinct local branches
of a hypersurface X*, then the k-fold locus of X* has codimension < k.

We remark that in our problem dealing with algebraic K3 surfaces it is
expected that all such inequalities should in fact be equalities. The reason is that
if, e.g., there were co” n-fold tangent hyperplanes to X € 9 ,, then we would have
on X either (i) o' elliptic curves with the same Jj-invariant, or (ii) co' rational
curves. Both of these are impossible.

We also remark that, in general, the k-fold locus X2 of X* may be defined by
a condition on Fitting ideals (see the beautiful survey paper [19] of Kleiman).
Since this is a determinantal condition, it follows that

X7 nonempty = codim X} < k.

What our proof of (i) in Proposition (4.8) will give us is that
(4.12) codim Xf < k  for any algebraic K3 surface X.

This is a fairly strong condition, but, as will be discussed in the next section,
it does not yield the conjecture of the introduction, since it need not be the case
that for any H € X and C, any irreducible component of H N X, we have
g(C)<n—k+1

To establish (i) in Proposition (4.8) we shall use induction on n for the
families ¥, together with the following linkage between %, _, and % :

Let X, € P"*! be a K3 surface having one ordinary double point py. It is well
known that such exist for all n > 1,> and projecting x, from p, gives a smooth K3
surface X' C P". In fact, X' belongs to the family F,_, and is bikolomorphic to
the standard desingularization X, of X,,.

It will suffice to prove (4.12) in the crucial case k = n. Suppose first that
H' N P"is a hyperplane that is tangent to X ' at n — 1 distinct points. Then the
inverse image of H' under the projection P”*! — { p,} = P~ gives a hyperplane
H, C P"*! that passes through the double point and is tangent to X, at n — |
points corresponding to the tangencies of #' and X'. If E C X,, is the excep-
tional curve appearing in the resolution of p,, then in general we may expect
that none of these tangencies of H' and X' will occur along E. In this case H,is
tangent to X, at n — 1 distinct points away from p, and passes through this
double point.

Assuming that this is the situation, suppose that X € ¥, is a smooth K3
surface that is close to X, and let U C X be the inverse image of a neighbor-
hood U, of the double point under the collapsing map X — X,. Now the set of
tangent hyperplanes to U forms an open piece U* C X* of the hypersurface X*,
and the crucial observation is that under the specialization U — U, we have

U*— U§ +2p¢.

Here, U is the closure in P"*'* of the set of tangent hyperplanes to the
complex manifold U, — { py}, and p§ is the P" of hyperplanes through ps. In

3 For example we may consider trigonal K3's. These appear as hypersurfaces in a 3-dimensional
scroll W (cf. Mayer [22] and Saint-Donat [27]), and X, may be taken to be a singular section of W.
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the language of Section 5 of Griffiths [14], 2p§ is the Pliicker defect associated to
the degeneration U— U,. In particular, every hyperplane through p, is the
specialization of two tangent hyperplanes to X.

Now by (4.11) where k = 2, there are co? hyperplanes that are tangent to X at
n — 1 distinct points close to the n — 1 points where Hj is tangent to X, — { po},
and by the above observation co' of these must also be tangent to U. This
establishes (i) in Proposition (4.8) provided that there is a hyperplane /' that is
tangent to X ' at n — 1 distinct points none of which is on the exceptional curve
E. In the general case the same argument goes through provided that we adopt
the definition given by Kleiman [19] for the k-fold locus X . Rather than write
all this out in detail, we shall examine the low cases n = 1, 2, 3 and discuss what
is needed to establish (ii) in (4.8) for all n.

(d) Completion of the proof of (ii) in Proposition (4.8) When n = 1 we have that
any smooth K3 surface X € ¥, is a 2-sheeted covering
XS P2

branched along a smooth sextic curve B. The “hyperplane sections” are 7~ '(L)
where L C P?is a line, and the section is singular exactly when L is tangent to
B. Consequently, the 7~ '(L) for L € B* give the desired oo’ elliptic curves E,
on X. We note that £, becomes rational when L is bitangent to B, and that such
L always exist.

When n=2 a smooth K3 surface X €%, is a quartic X C P>. This case
illustrates the difficulty in the general situation. Namely, a “nice” bitangent
plane H will be simply tangent to X at two distinct points, and the correspond-
ing section E = H N X will be a plane quartic curve having two ordinary nodes.
It is then clear that g(E— ) = 1. However, in exceptional cases we may imagine
that E has either one tacnode (= two infinitely near nodes) or one cusp, and
both of these contribute to the locus X7 . In the first case we still have g(E) = 1,
but in the second g(E) = 2.

Because (ii) of Proposition (4.8) is true when n = 1, we may use the induction
argument above to infer that a generic X € %, has o' planes H € X7 that are
tangent at two distinct points. Then, by specialization on any X = %,, there are
o' planes H € X,* for which g(H N X) = 1. Actually, in this case we can say
more. For any smooth surface X C P> we may take a net {H,},cp Of hyper-
plane sections and plot the discriminant curve B C P? where E,= H,N X is
singular. For a generic choice of net this curve B will have § ordinary double
points and k cusps, and there are classical Pliicker-type formulas for the
numbers of each (see Castelnuovo and Enriques [4]). In particular, in the case at
hand we have 8 > 0, and so there exists one—and hence co'—planes that are
tangent to X at two distinct points. This in turn yields (ii) of (4.8) when n =2,
and then the assertion about n=3 follows as before from the induction
argument.

It is pretty clear that for increasing n the possibilities for what an n-fold
tangent hyperplane H € X* may cut out on X quickly get out of hand, so that
some more efficient method for dealing with the singularities must be devised in
order to establish the second part of Proposition (4.8) in general.
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(e) Concluding remarks. We will conclude with an algebro-geometric implication
of the above argument, assuming that it can be pushed through in general.
Namely, the same method would establish the following result:

(4.13) On any algebraic K3 surface X C P"*! there are a finite number of rational
curves of degree 2n.

In fact, these will be sections C = H N X where H is tangent to X at n + 1
distinct points. We note that C is a Castelnuovo canonical curve in the sense of
[16]. Giving such a Castelnuovo canonical curve in abstracto is the same as
giving 2n + 2 marked points on P'; consequently there are 02"~ ! such curves
and they form a family that has codimension n + 1 in the Deligne-Mumford
compactification [7] of curves of genus n + 1.

The above result is related to a special case of the recent beautiful theorem of
Mori [23]:

Let V be a smooth algebraic variety of dimension n such that — K,, is ample. Then
V contains a rational curve C such that C-(— K, )< n+ 1.

Mori’s proof is in two steps: He first uses a characteristic p argument to
produce a rational curve C, C ¥, and then he employs elementary deformation-
theoretic techniques to reduce the degree of C, to n + 1.

When dim V' =3 we may use Kodaira vanishing plus the Riemann-Roch
theorem to find a surface X € | — K |. In case X is smooth, it is a K3 surface
and (4.13) yields a rational curve. When X is not smooth it should be even easier
to find a rational curve, but we have not tried to do this.

We feel that it would be an instructive project to establish Mori’s result by
projective methods. In particular, a consequence of Mori’s theorem is that X is
not measure hyperbolic in case — K, is ample. According to the conjecture of
the introduction, this should be true if we only assume that — K v =0,and a
different argument for Mori’s theorem might shed some light on this question.
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