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INTRODUCTION

The theory of value distributions, or Nevanlinna theory, began with the subtle 5 d 1
nd

far-reaching quantitative refinement by R. Nevanlinna of Picard’s theorem (cf. Nevan

I 2 . - .
linna [12]) concerning the exceptional values of an entire meromorphic function |
ion

f: C - P'. The theory was extended b i

y Ahlfors [1] to an analysis of the positi ;

! . 3 s sit 2
;Sé]g:lgznemte }ma’r)f;orpb;c curve f: C — P" relative to the hyperplanes inpthe ;2:1;:;; :'
jective n space P". Recently the quantitative aspec f N i 1
; ‘ Recer pect of Nevanlinna theo as |
e{;;{inde:d II:r a different dlrectloxlﬂ. to nondegenerate equidimensional holomorphi;ymids L

i;:t gs j,dC‘ - M, w?wre M is an arbitrary smooth projective variety and oncIi:
':Tf:;w in how the |r1nage F(C") meets the divisors on M [4]. There flas also been :
}on;: eri;)le' wmijk by Stoll concerning the case of a general holomorphic mapping
(G M, inw ich the position of f(C") relative to th ieties i :
dimension in M is studied (cf, Stoll [14]). ool of Mk e
7.32;;1“?1 p}omt it Imuid seem that further substantial progress in the global study of
g olomorphic mappi i \ ]
el p ppings perhaps depends on understanding the following

théAJﬂTor’hat lextenl can the basic results of Nevanlinna theory for divisors, such as
E: anlinna meg_!m!:!_l-' Nia, r) < T(r) + C (cf. Nevanlinna [12, p. 175]), be carried
over to higher codimension ? ' ' 3
(B) What can be said about the iti 14 i i !
Bidis e position of a holomorphic curve in a general alge- 4
v

test; T .
Smfid;:;lgm;rz;; is related to the Bezout probiem discussed by Griffiths [8], and an under-
seems necessary for progress on the K i e |

. . . - 9 ¢ %]
oy bayashi metric [10] of general
In thi e s Ve tw
Thesc{h]s pz;p_er we shall give two _thcorems. one concerning each of the above problems.
results, which are stated in Sections | and 6, are by no means definitive but

TR e .
This research was partially supported by NSF grant NSF-GP-31359X-1

169

=z

TR

e

Y rEey

SELELFEETETT o ¥ fr

170 PHILLIP A. GRIFFITHS

rather are an attempt to focus attention on, and perhaps clarify in special cases,
and B. With a similar purpose in mind, in Sections 3 and 7 we have given

problems A
s and specific questions related to these problems.

some general remark

1. STATEMENT OF THEOREM |

Let f/: C* — P? be a nondegenerate holomorphic mapping. Given a point W e P?,
we assume that /(W) is discrete and let #( W, r) be the number of points {counted
with multiplicities) in f~' (W) n {z€ €2: ||z| <r}. Our basic problem is to estimate
n( W, r)in terms of quantities independent of W (cf, Griffiths [8] for a general discussion
of this question). For the usual reasons arising from Jensen's theorem. it is better 1o

seek an estimate on the counting function
N(W, ) = [ n(W, t)(di/0). (1.1)
bl
[Note: To allow for the possibility f(0) = W, it is necessary to set n(W, 0) =
lim,_o n( W, €) and
N(W, 1) = J (n(W, 1) — n(W, O)}(dt/1) + n(W, 0) log r.
o
Generally speaking, we shall leave it to the reader to make the necessary technical
adjustments arising from such special cases.] )
Let @ = dd° log|Z|? be the standard Kahler metric on P?
first-order geometric invariants attached to f are the two order functions

and Q = f*w. The basic

s d
Ty(r) = | {[ QAQ}-‘?, T.(r):jr:“llz“&rn,«dd‘:}—:, (1.2)

Yo Mz

where 7 = log|z|® is the standard exhaustion Jfunetion for C2. We observe that (cf.

Wu [15])
T =|  NOW.rdw (1.3)
YWe Pl

is the average of the counting functions with respect to the normalized (JpedW =1)
invariant measure on P?*. Contrary to the one-variable case, we cannot estimate
N(W,r) by its average Ty(r), nor even in terms of both T,(r) and T;(r) (see Section 5).
However. we shall give an estimate on N(W, r) in terms of Ty(r), Ty(r), and another
higher-order invariant S(r) to be defined now.

Let P! be the set of lines through the origin in C2. Foreach ¢ € P2 welet C; = €7 be
the corresponding line and f;: C— P? the holomorphic curve (cf. Ahlfors [11 and
Chern [5]) given by restricting f to €. Each such holomorphic curve has a dual curve
FXiC P2* and we let Q, =f*(w), Q* = (f*)*w be the pulled-back metrics. The

r - dt L r - . ﬂ
n(r)_.L(“zJWQ:)T, T;(r)—jo( | n,f)r (1.4)
:'EC;

quantities

=l <
zeCg
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are the basic order functions regulating the growth nt,f As will be seen, it is possib
to estimate 7;*(r) in terms of Ty(r), and T(r)interms of Ty(Ar), 2> 1. If we set ;

log "hQ* A dd‘r, (1) '

QF=hQ, SM=|

then S{r) is a second-order invariant of the mapping f. Using the notation
Alr) < B(r) i
to mean that * the stated inequality holds outside an open set EcR™ with [ dift < oo »
our main result is the following theorem. '
Theorem I. The counting function is estimated by

N(W,r) < Tyr)

+ S(W, .?'}+C, “6} 1 ::.

where the remainder term S( W, r) satisties

| S(W, 1)(d1]t) < CT,(Ary*** + f'rs(_f)(d;_,-,) /. y ;?’j
et L] ( '?) - o

Remaric.  Essentially this amounts to estimating the growth of N(W, r} in terms of
ic quantities Ty(r), Ti(r), and S(r}, which are independent of W. The geometric
interpretation of S{r} will be discussed in Section 5. The main result of Griffiths (8] 5 :
,Of a similar nature, except that the quantity S(r) has a somewhat better geometrig:
interpretation there.

2, THE FIRST MAIN THEOREM; A RESULT OF CHERN-W'U

Let fiC?*—P? be a nondegenerate holomorphic mapping. Given We P2 set
= A4 n B, where 4. Be P?* are perpendicular lines defined by orthogonal unit .
vectors 4, B C¥. Following the notations of Chern [5] regarding P", the (1, 1) forms™

=dd°log|Z|?,  we=dd log(|Z. A|> + |Z, B|?) @211
(1Z,A1*=|<A4,Z>|* and |Z. B|* = | (B, Z)|*) are well defined on P? and ﬂi\fe re- E
spectively, the usual Kihler metric on P? and the invariant density on the P! of Imes
through W e P2, Choose coordinates Z = (Z,. Z,, Z,) in C* such that

(A, Z5 =Z,, (B Z)=27,, W =[1,0,0].
In terms of the standard affine coordinate system (w,, w,) — [, wy, ;] around W, we

have

w=dd%log(l + |w,|*+ |w;]%), wg = dd® log(|w,|* + | w;]*) (2.2)

Consider the singular (1. 1) form (Lerine form)

1L

)(w + wg). (2.3)

= &l

T ARUVTTY Y

Ay =1 i M
0.-;.(»/ 4|z ; .Z Bf

Formally we have

di*Ay =(w—wy) Aflo+w)=w Ao
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since wy A @ = 0. Locally around W,

3 1
K= log(

12 3
; i wal®) + ()
‘!u'l'2+ [ wsl ’

)dd‘ oo
where (-+) are less singular terms. From this we recognize the principal part of Ay
as minus the Bochner—Martinelli kernel, Considering Ay is a locally L' form, we
consequently find the equation of currents {cf. Griffiths and King [9] and Wu [I5])
dd°Ay = @0 A © — Sy (2.4)

Applying f* to (2.4) and integrating twice gives the first main theorem (FMT) (cf.

Griffiths and King [9], Stoll [14], and Wu [I5])
f*.”\w A ddt 4+ C, (2.5)

;"*A.v ndit = To(r) + }

NI, =) 1|
< “lzil=r

zl| =
where 7 = log| z||>. Note that the Levi form dd°t = dd® log| z||? is the density on the P*
of lines through the origin in C*. Using the notation

S(W, r) = | f*./\,,, A dd't,
Nzl =
and noting that f*Ay A dt =0 on the sphere |[z| =r, we obtain from (2.5) the
inequality
N(W,r) < Talr) + SOW, 1) + C. - (2.6)

As an application of (2.6), we shall derive the theorem of Chern-Wu {15]. For this

we use the following lemma.

Lemma 2.1
Ag dW = car, c>0. 2.7y
“We Pl
Proof. The average A = [y p: Ay dW is an L' form on P? which is invariant
under the unitary group. Consequently the Laplacian AA = 0 in the sense of currents
since P? is a symmetric space. It follows from the regularity theorem that A is €%,

thus harmonic in the usual sense, and finally that A = cew for some constant ¢ > 0.
Q.E.D.

Using the lemma and positivity of everything in sight. we have

Aw dw] addr=c[  onaddt=cT/(r),

“hzllEr

S(W,rydw = | ( [

Yzl r \TWeP
where T,'(r) =dT,(r)/dlogr and T(r) is given by (1.2). Suppose that [ ey dW =
| — &, 6= 0. Then integrating (2.6), we obtain

YWepl

T =  NW.rydw [by (1.3)]
‘We P2

= N(W, r) dW (obviously)
“We f(C?)

<(1 = NTa(r)+ (N +C [by (2.6)].
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Dividing by T,(r) gives
1< (1 =0) + [Ty (r)/ To(r)] + [C/Ty(r)],
from which we obtain, by letting r — co, the following theorem. 2

Theorem (Chern-Wu [15]). If lim,_  [T;'(r)/T>(r)] = 0, then the image CH %
dense in P2,

Remarr.. The standard example of a map f: C* —» P? where the image omits an |
open set is that of Fatou-Bieberbach. It seems to me that this example is a reflection of 1
the enormous automorphism group of C2. For instance, for any entire function R0 the
map (z,, z;) = (z; + A(z,), z,) is a volume-preserving automorphism of C2, :

In outline, the Fatou-Bieberbach example is constructed as follows: Let T €2 _, 02
be a biholomorphic map having the origin and some other point z, % 0 as cop.
tractive fixed points. It is easy to find such T, and T'may even be taken to be rationg] -
By a fairly easy convergence argument, we may find a local holomorphic coordinate.
system around zero in which T'is linear. Letting B, = {z e C*: |z < n}, we may thys.
find a biholomorphic mapping /> B, —f(B,) = C* and a linear transformation L oy
C? such that ]

Tf(z) = fL(z), ze B,. (2.8

Suppose that the eigenvalues of L are <1/ < |. Then the right-hand side of (2.8) i
defined for z € B,,, and thus we may define f(z) on B;, by /() = T~ 'fL(z). Continuin
in this way, fextends to an entire mapping f: C* - C* satisfying

T =LY k0. (294
It follows from (2.9) that /" is one-to-one, and moreover there is a neighborhood

U of z, such that f(C*) n U = @. For, if f(z) € U, then

lim T*(2) = zo,  lim fI¥z) = 0,
k= m

k— oo

since L is contractive on all of C?. This is the Fatou-Bieberbach example.

3. TWO ESTIMATES FROM THE THEORY OF "b
HOLOMORPHIC CURVES

Let f: C - P? be a nondegenerate holomorphic curve. We follow the terminology
and notations of the paper by Chern [5] and represent f by a holomorphic home- i
geneous coordinate vector Z({), { € C. The dual curve /*: C - P?" is then given by
Z(L) A Z'([), and the pulled back Kihler metrics by :

Q =dd log|Z(O1?,  Q* = dd® log||Z(0) A Z'(0)]2. (3.1)
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For fixed W e P? we let Ay be given by (2.3) and seek to estimate the integral
| U f"f\.‘-)(:ir_.-'r_)‘ (3.2)
Yo \pgis

For this we shall use the Ahlfors inequalities {1,5] in the theory of holomorphic
curves, which we now recall.
To begin with, we set

v(t) = J‘I'I Q, v¥(1) = I. gt

= e
=1 I5i

and denote by

Vir) = I‘ra..-t_r)(d:.-'r)_. V¥r) = {Jv*('r)(dr.-"r).
L] b t]

the order functions of fand f*. The relationship between V(r) and V*{(r) is given by the
second main theorem (SMT), which is derived from the formulae (cf. Chern [5])

WZ A 212 /=1 W = ;
Qzly—f\fl—["\—"““":)zq\ a n dt),
:Z;4 . 2 / I ] 5 3)
'Z|2|Z A2 A Z"ilil W t_l ¥ * W _1 r | )
A o i :
s 1Z A 21 ( e dg A dC) = k ( 5 dc w di. .

From (3.1)and (3.3) it follows that dd log k = Q* — 2Q, which leads to the inequalities
(cf. Chern [5])

VE(ry < 2V0) + log [(120) | kdB)l.  VE) <2V +log V) ).

1§ =r

Similarly, we may estimate the growth of F(r) by that of V*(r), using the second
equation in (3.3).
Setting

pw = 1ZIPNIZ, A? + | Z, B|?),
the Ahlfors inequality we shall use is the estimate

(3.4)

A

L], wa)(§) <cvmre 4

As a first application of this. we write

f*w = Q = dd log)| Z||*,
frw, = Q, = dd°log(|Z, A|* + | Z, B|?),
f*Ap = log py Q + log py Q.
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and then we seek to estimate the integral [cf. (2.3)]
rf

[' ({ ]ongQ){d:,-'r)

Jre
for large r. To do this, we have by the concavity of the logarithm
.

7 dt logr| 1 [ 1 r ; 'l dt)
1 Q) —= — | v == log py Q| —
e UI;I-*G: O Pw ) ! 7 \logr e ) L‘lf)‘j!élf:r g Pw : f

log r-v(r) er e . N\dt
< _.g_‘_,(.__ log{' U pwﬂﬂ) T}
A ro Wi e

<8 WD jogic, vy +C) (by (34)

<SGV + Vi

since v(r) < V(r)'™* § (cf. Nevanlinna [12, p. 253]), log r < e¥(r) forlarge r, and where
ro has been chosen large enough so that log rg 2 1. v(ry) = 1. Combining, we obtain

o
where we have chosen a fixed 4 (say 4 = ).
The problem of estimating
rr i " "
i (J log ngu)(dr}'f)
Yo Vs ;

is more subtle. The basic step is the following lemma.

Lemma 3.1
Q, < CQ + C*Q*, C, C* constants, (3.6) .

Assuming the lemma, we will complete our basic estimate on the integral (3.2). The .
term '

c ({ log p,,.Q)(dr,-':)
SORHES

is estimated by (3.5). As for the other term, we write

0 = K*Q*, h= 1fh*,

wanr W ao\dt 1 .\ dt
Jn Uri:&; log pw Q*) —=x Jo (J!;;-ﬂ log(h*py )Q*) = + ; J.n (-‘h;;s: log hQ ) ==

(3.7

[ U| log p,vQ)(dq’t} <CVEPt+C . 63 |y

- me

T s L T
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The first integral on the right-hand side of (3.7) may be estimated as before using
concavity of the logarithm and the Ahlfors inquality (3.4). This gives

[ log(h*p)@* )(d1/0) < CVXAV(' 4 C . (3.8)

Y0 WKl =e /

Combining (3.3), (3.5)-(3.8) gives our final estimate

i U f*.-\w) 2 eVt + | (4 iog‘hQ*) i /. (3.9)

I HES ! AN 1
Proof of Lemma 3.1. The form w, = dd° log(|Z. A|* + |Z, B|?) has a singularity
at We P? and so it is not immediately apparent that Q; = f*w, is locally bounded
on C. However, this may be seen as follows: Let P25 P? be the quadratic transform
of P? at W. Then n '(W)=P,' is the set of lines in P? passing through W,
and B2 — P,' = P,? — W.Since w, is the density on Py,'. n*w, is smooth on B,°.

There is a unigue holomorphic lifting / of f such that the diagram

is commutative, and thus Q, = [*(z*w,) is C* on C.
To prove the desired estimate on £, we choose affine coordinates (w,, w;) around
W such that wg = dd® log(|w|? + |w;|?) [ef. (2.2)]. Clearly w, < Cev outside a

neighborhood

U= {{w w5 w2+ |wa]? <p?) of .

e

Given a holomorphic curve g(&) = (1w, (). w1({)) from the disc |{| <d into U< P it
is clear that the size of g*w, is maximized when the curve passes through W. Locally
we may choose wy, w, such that

v2+ath

1\'1[C)= j(l-‘:l-e—rr-l,-[-.,). L['z(:):: L Fe),

where (++-) denotes higher-order terms (c¢f. Ahlfors [1, p. 6].). Then by (3.3)

I W2 S =1 ;
g* g = lg ~ gl (\_ e m;)

lall*

'y epp|a e oL _"m |
:l_g‘ﬁ.[“"'b)(ls: ) (\ 1;2’@';«0’{)

ER 2w

1 + by I
= B EOE e (g e n ) (3.10)
\ n

=)
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Similarly, setting Z({) = [1. wy({), w,({)] and using (3.3),

IZIPIZ A Z° A 272 (=1, )
EA — d d
ey o |, bkt
laBl3(1 + a)*(1 + b2 +a +BPL* * +-) -\_'T'ld? )
= A d
la|*(1 +a)* (1] + ) ( 2 ¢
1B + b2 +a+ B2+ ) (V-1 . ) ]
= dt A dl),
|2|*(1 +a)? ( 7z PN (.11
where g*({) = A Z'(0) is the dual curve to g({). Comparing (3.10) and (3.11) gives | !

gra(W) :ég*w*'( W), from which the lemma follows. Q.E.D.

4. PROOF OF THEOREM |

Referring to the FMT (2.5) and its Corollary 2.6, we must prove the estimate
o dt o~ " dt
J S(W, 1)— < CT,(2r)* ™" + | S(1)—
0 f ‘o !
for the remainder term

S(W,r)= 1 S*Ay A ddt.

YNzl sr

Since dd°t = d¢ is the invariant measure on the P! of lines through the origin in Cz 9

we may iterate the integral for the remainder to have
S(W, r)

On the other hand, referring to (3.9), we have

o \ ol dt
| ( | f;*/\w) ey + JO( J Icg'hﬂ*] S e @
HUATTTN | =t zef, [lz] €t
where [ means that the exceptional interval E, depends on the line {. However, an’
examination of the proofs of the inequalities in which the exceptional intervals appear
shows that we may choose a uniform exceptional interval £, which works for all {in ai
neighborhood of &,. Using the compactness of | P, we may Lhus have an estimate (4.3
where / replaces /.. Combining (4.2) and (4.3) gives
S e dt ;
’ S(W, :)—-- < C | Tdr)* "o dE + [ (r}f Vs
“IeP! (44]

log*hQ* A dd° log|z|.

“h=ll =

The proof of Theorem 1 follows from (4.4) and the following propesition.

b ds @1 q

= | ( | f;nw) dz. @2
EsP! \zed, izfi=r _:_....

E T TEETTT o0V v e
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Proposition 4.1
Tir) < C; Ty(4r), A= 1. (4.5)

Proof. For each z # 0 we let £(z) be the line joining z to the origin and set

Tz, r) = J Q.
“wc)f.. '-!
Lemma 4.1
T(z, r) is a plurisubharmonic (psh) function of ze C% (4.6)

Assuming the lemma, we use the sub-mean-value principle for psh functions to have

T(zq, 1< C; IA T(z, r)du(z)

llz=zol <8

TENdua <G |
Nzll=ll=z0]l +&

=C; | ( J Q) du(z) < Cs J { J Q) d¢
=l = |lz0] wedfz) fep!

. zed
lwil =rfl=zi| Nzl =r(llzoll &) /

= C,; Ty(rlzq| + 19)
1, we obtain

ThE £ G,
Q.E.D.

Choosing ||z, =
A=1+44,
which proves (4.5).

Proof of Lemma 4.1. We consider each line 4 = P2 as a point 4 € P?*, and set

n{A, z, t) = number of points w satisfying f(w)e 4, wel(z), [w| <1]z],

N4, z,r) = fmA. z, ){df1).
*0
Then the FMT for holomorphic curves gives (cf. Chern [5])

Tiz.r) = f N(A, z,r)dA.

YAe P

On the other hand, an easy argument (cf. Griffiths and King [9, Section 4]) gives that
N(A, z,r)is psh in z. Since the average of psh functions is again psh, we are done.
Q.E.D.

5. SOME COMMENTS AND EXAMPLES

(i) The nicest possibility of a generalization of the standard upper bound on the
number of zeros of an entire meromorphic function f(z), z € C, in terms of the growth
of f would be an estimate of the following kind: Given a holomorphic mapping
f: €* = P? and W e P? such that £~ (W) is discrete, then

NW, 1) < CThr)+ CTi(n+cCc" /. (5.1)
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However, any such inequality (5.1) is false, for the following reason. Let fi, /5 € o(cy
be the two functions given by Cornalba and Shiffman {6]. Setting

M(f;, r) = max log| fi(z)|

fzlt=r
and making appropriate choices in their example, we have
M(f,.r) < C,rf,

(i.e.. f;. /2 are of finite order zero). On the other hand, the number n(r) of commoy
zeros of f,, f5 in the ball |z|| < r may be assumed to satisfy

x>0, i=12 (5.2)

n{r) = Ce". (5.3)

Setting f = (f;, f»), we obtain a holomorphic mapping f C? — C? = P?, and we claip
that no estimate (5.1) holds when W = (0, 0) e C? = P2,
To see this, we first observe that

Tir) = ]

<Lt

T.:(r) d¢

satisfies

T € G £ >0, (5.4)

because this inequality is true for the order functions Ty(r) forall £ e P! (cf. Nevanlinng |
{12, p. 175]). On the other hand. letting ® be the Euclidean volume form,
dt

!; (' = srf*(b) iffi - J:: (JAL:!l &:lJ. Z{D) Pl

Ty(r) <

where J(z) is the Jacobian determinant of f: C* — C?, From (5.2) we find an estimate | !/

[J(z)|? < Ce?,

which leads to an inequality

Ty(r) < Ce'. (5.5

Clearly (5.3)-(5.5) show that (5.1) cannot hold. . . .
In conclusion. it would seem that the problem of estimating the size of{i’ (W) in
terms of the growth of f has one of the following two possibilities (cf. Griffiths [8]). |

(A) The *“size™ of £ ~}(W) should take into account not only the number of points
in f~'(W), but also their relative position in C*. . 3

(B) The “size " of /(W) means the number of points, and any estimate on f (W)
involves higher-order invariants of f.

(i) Tt is interesting to consider the Bezout problem in the light of the recent results
of Pan and Skoda [13]. Before doing this let us recall the essentials of the one-variable
theory, restricting our consideration to the finite-order case [12] for simplicity.

Let f(z) € ¢(C) be an entire holomorphic function with

£0) =1,

M (f, r) = max log| f(z)].

Izl=r

TR R oW br

Y
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and n(r) the number of zeros of f/ in |z{<r. For any discrete set of points D =
{21, 22, ...} we let n( D, r) be the number of z; with |z;| < r. Then the three basic results
are as follows.

(A) n(r) < CM( [, 2r) (upper bound estimate).

(B) Given D, there exists fed(C) satisfying {f=0}= D M(f, r)< Cn(D, r)
(existence).

(C) Given D and any two functions £, f as in (B), then f = ¢}, where P is a poly-
nomial of degree < ord(D) (unigueness).

Of these, (C) is perhaps the most interesting and most useful in applications (to number
theory, elliptic functions, etc.). The results (A)~(C) all generalize to divisors in C” [11].

If we look at points in C?, then the direct analog of (A) is false (Cornalba-Shiffman).
On the other hand, given D = {z|, z,, ...} a discrete set of points of finite order in
C?, then Pan has shown that D is given by the common zeros of three functions
Jis f2, f3 of finite order. Skoda proves the same result in general [13]. It seems quite
reasonable, although it has not been proven yet, that D is given by two functions of
finite order, since this is true without the growth conditions. So far as I know, no
analog of (C) has been discussed vet. .

Now it seems reasonable to combine (B) and (C) and discuss the growth of an
ideal .#, meaning not only the generators but also the relations. Thus # might be
said to have finite order if there are certain preferred sets of generators of .# given by
entire functions of finite order, and if the relations between the sets of generators are
also of finite order. However, this is speculative, and the only thing which seems certain
is that there is more to the story than what is presently known.

(iii) In the Bezout-type estimate given by Griffiths [8] there was a geometric inter-
pretation of the terms corresponding to S(r) in Theorem I involving the inflection
points of the analytic curve ¥ < C*. In the case of Theorem I there does not seem to be
any such immediate geometric interpretation, but we can give a typical local description
of how f looks around points giving a large contribution to S(r). Namely, the map

{z, w) —fr (z"*, w4+ z"2)
has /'~ 1(0, 0) isolated and with multiplicity n + 1. Taking the lines w = const to play

the role of the lines through the origin in C2, the local contribution to S(r) is roughly

[logl|wi2|z*/(Iw]? + |z|?)?] dz dZ dw dw,

o

and the logarithm is infinite at z = w=01if n > 0.

6. STATEMENT AND PROOF OF THEOREM 1l

Let M be a compact, complex manifold of dimension two (M is an analytic surface)
and D < M an effective divisor; i.e., D =Y ; n,C,, where the C, are irreducible curves
and n; > 0. Consider a holomorphic mapping

fi CoM-D. (6.1)
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Definition. A variation F of [ is given by a holomorphic mapping F: C x p__
M — D, where D, = {we C: |w| <&} and F(z. 0) = f(2).

The holomorphic mapping f is isolated if for any variation F of f the Jacobiay
determinant J(F) = 0. Intuitively, fis isolated if under any variation of f the image

set does not move.

We recall that D has simple normal crossings if D=C, + -+ Cy, where the of
are smooth, irreducible curves meeting transversely. Let [D] be the line bundle deter.
mined by D and K, the canonical bundle of M. Using the notations of Carlson anq

Griffiths [4], our second main result is the following theorem.

Theorem II. If D has simple normal crossings and ¢,([D]) + ¢,( Ky) = 0, then any
holomorphic mapping f: C— M — D is isolated.

Proof. This is a simple consequence of the volume form Qon M — D constructed

by Carlson and Griftiths (3, §2] and the Ahlfors lemma for volume forms [10]. We first
recall that & has the curvature properties 1

Ric 2 > 0,

Next we let P(p,, p2) be the bicylinder |z,| < p;, i =1, 2, in C* and

Olpy, p2) = P:zﬂzsz{ﬁ’l A .|2)2(ﬂ22 - |52§2)2
be the Poincaré volume form on P(p,, py), where ® is the flat Euclidean volume form, g
The Ahlfors lemma says that given any pseudo-volume form ¥ on P(py, p2) satisfying *
the curvature conditions (6.2). then ¥ < ©(p,, p,). In particular, if *¥(0) # 0, then

p1p2 < [@O)/'P(0)]

Now let F; C x D, be a variation of f. If F is nontrivial, then we may assume thatg

J(F)(0) # 0 and apply the Ahlfors lemma to ¥ = F*Q on D, x D, . The estimate (6.3)
gives rg < o0, which is a contradiction. Q.E.D.

7. SOME COMMENTS AND QUESTIONS REGARDING
HOLOMORPHIC CURVES ;

(i) One of the most attractive questions in the global theory of holomorphic map-

pings is the study of the position of a holomorphic curve /2 C— M in a general alge-

braic variety M. In case M = P" and we are interested in the position of f relative to
the linear hyperplanes in P", the theorem of Picard-Borel and subsequent quantitative
refinement by Ahlfors [1] give a beautiful understanding of the problem. However,
for general M or even for hypersurfaces in P, very little is known.

To formulate a sensible problem, we restrict ourselves to the case dim M = 2

Problem 7.1. Incase D has simple normal crossings and ¢,([D]) + ¢,(Ky) > 0, does
the image of a holomorphic mapping f: C— M — D lie in an algebraic curve (cf.
Green [7] for examples)?

RicQ ARicQ2=Q. (6.2)

4

(6.3)

L= copr——— e
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Remarks. Incase M = P*and D =L, + '+* + L, is a sum of lines, simple normal
crossings means that the {L,} are in general position, and the inequality on Chern
classes means that N = 4. In this case the answer to the problem is affirmative, by the
theorem of Borel [1].

In general, we can use the conditions on D together with Carlson’s trick [3] to reduce
Problem 7.1 to the case where D is zero. Namely. the hypotheses on D are basically
those which allow one to construct a finite covering M — M branched only along D
and where ¢,(Ky) > 0; i.e., M is a eanonical algebraic surface. The mapping fthen lifts
to ]i C-M.

Thus let us assume that M is already a canonical algebraic surface and ask whether
the image of /2 C — M lies in an algebraic curve. If this is to be true, then we should
have some a priori idea in which curve C the image lies, or at least a bound on the
degree of C. For example, in the case of the /» C— P? — {4 lines}, the image f(C) lies
in a line, and indeed in one of the diagonals of the quadrilateral given by the four lines
(see Fig. 1). In general, however, even the following problem-in algebraic geometry

does not seem (o be known.

Problem 7.2. Let M be a canonical algebraic surface. Then, are there a finite
number of rational and elliptic curves on M7

(ii) A problem closely related to this one deals with Kobayashi metric [10] on an
analytic surface M. By the theorem of Royden, the Kobayashi metric is given by a
length function F(x, &), xe M, & £ T,(M), defined on the holomorphic tangent space
T.AM) at each point x € M. Letting D, ={z e C: |z| < r}, the definition of F{x, £) is
F(x, &) = inf,(1/r,), where f: D,, — M is a holomorphic mapping satistfying the condi-
tions f(0) = x. f §/6z = £. A beautiful theorem of Bloch [2] gives the Kobayashi
metric on P? — {L, + L, + Ly + L,} as follows: F(x, £) > 0 unless x lies on a diagonal

of the quadrilateral given by the {L;} and & is tangent to this diagonal (Fig. I; the
pictured vectors are the only ones having zero length for the Kobayashi metric).
-~ P
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Fig. |

Problem 7.3. Is the Kobayashi metric F(x. &) on a canonical algebraic surface
positive on a Zariski open set? In particular. assuming an affirmative answer to
Problem 7.2, is F(x. £) > 0 unless & is tangent to one of the finitely many rational and
elliptic curves on M? '

As a closing remark, it seems to me that a proof of any of these questions will

necessitate relating the local higher-order geometry of an analytic curve in M to the
global structure of M i.e., some sort of Pliicker formulas for an analytic curve in M

are needed.
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