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12.0 COMBINING ROUTINES

12.1  Each one of the problems that we have coded in the past
Chapters 8-11 had the following properties: The problem was complete in the
sense, that it led from certain unembiguously stated assumptions to a clearly
defined result. It was incomplete, however, in another sense: It was certain
in some cases and very likely in others, that the problem in question would in
actual practice mot occur by itself, as an isclated entity, but rather as one
of the constituents of a larger and more complex problem. It is, of course,
Justified and even necessary from a didactical point of view, to treat such
partial problems, problem fragments -- especially in the earlier stages of the
instruction in the use of a code, or of coding per se. As the discussion ad-
vances, however, it becomes increasingly desirable to turn one’s attention
more and more from the fragments, the constituent parts, to the whole, In ocur
present discussion, in particular, we have now reached a point where this change
of emphasis is indicated, and we proceed therefore accordingly.

There are, in principle, two ways to effect this shift of emphasis from
the parts to the whole. :

The first way is to utilize the experience gained in the coding of
simpler (partial) problems when one is coding more complicated {more complete)
problems, but nevertheless to code all the parts of the complicated problem
explicitly, even if equivalent simple problems have been coded before.

The second way is to code simple (partial} problems first, irrespective
of the contexts (more complete problems) in which they may occur subsequently, and
then to insert these coded sequences as wholes, when a complicated problem occurs
of which they are parts.

We should illustrate both procedures with examples: This is not easy
for the first one, because its use is so frequent that it is difficult te circum-
scribe its occurrences with any precision. Thus, if we had coded the calculation
of the general third order pelynomial, then any subsequent calculation involving
{as a part) a third order polynomisl, would offer such an example. Also, in view
of Problem 1, any calculation involving a quatient of a second order and a first
order polynomial would be an example. Problem 3, where the whole of Problem 1 is
recoded as a part of the new coded sequence {but not Problem 2, where this is not
done) is a specific instance.

Examples of the second procedure are more clearly identifiable.
Problem 12 was used in this sense as a part of Problem 13.a and of Problem 13.b,
and also,after someimodifications, as a part of Problem 13.c. Problem 14 was
used as a part of Problem 15. In addition it is fairly clear that all of the
Problems 4-11 and 13-15 must be intended as parts of more complicated problems,
and that it would be very convenient not to have to recode any one of them when
it is to be used as part of another problem, but to be able to use it more or
less unchenged, as a single entity.
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12,2  The last remark defines the objective of this chapter: We wish
to develop here methods that will permit us to use the coded sequence of a problem,
when that problem occurs as part of a more complicated one, a= a single entity, as
a whole, and avoid the need for recoding it each time when it occurs as a part in
a new context, i.e. in a new problem,

The importance of being able to do this is very great. It is likely to
have a decisive influence on the ease and the efficiency with which a computing
automat of the type that we contemplate will be operable. This pessibility should,
more than anything else, remove a bottleneck at the preparing, setting up, and
coding of problems, which might otherwise be quite dangerous.

This principle must, of course, be applied with certain common sense
limitations: There will be "problems" whose coded sequences are so simple and so
short, that it is easier to recode them each time when they occur as parts of
another problem, than to substitute them as single entities -- i.e. where the work
of recading the whole sequence is not significantly more than the work necessitated
by the preparations and adjustments that are required when the sequence is subati-
tuted as a single entity. (These preparations and adjustments constitute one of
the main topics of this chapter, cf. 12.3.12.5.} Thus the examples of the first
procedure discussed in 12.1 above are instances of problems that are 'simple" and
"short" in this sense.

For problems of medium or higher camplexity, however, the principle
applies. It is not easy to name a precise lower limit for the complexity, say in
terms of the number of words that make up the coded sequence of the problem in
question. Indeed, this lower limit caennot fail to depend on the precise character-
istics of the computing device under consideration, and quite particularly on the
propertiea of its input organ. Also, it can hardly be viewed as a quite precisely
defined quantity under any conditions. As far as we can tell at this moment, it
is probably of the order of 15-20 words for a device of the type that we are
contemplating {(cf. the fourth remark in 12.11),

These things being understood, we may state that the possibility of
substituting the coded sequence of a simple (partial) problem as a single entity,
a whole, into that one of a more complicated (more complete) problem, is of basic
importance for the ease and efficiency of running an sutomatic, high speed
conputing establishment in the way that seems reasonable to us. We are therefore
going to investigate the methods by which this can be done.

12.3 We call the coded sequence of a problem a routine, and one which
is formed with the purpose of possible substitution into other routines, a
subroutine. As mentioned above, we envisage that a properly organized automatic,
high speed establishment will include an éxtensive collection of such subroutines,
of lengths ranging from about 15-20 words upwards. I.e. a "library" of records in
the form of the external memory medium, presumably magnetic wite or tape. The
character of the problems which can thus be disposed of in advance by means of such
subroutines will vary over m very wide spectyum -- indeed a much wider one than is
now generally appreciated. Some instances of this will appear in the subsequent
Chapters 13 and 14, The discussions in those chapters will, in particular, give a
more specific idea of what the possibilities are and what aims possess, in our
opinion, the proper proportions.
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Let us now see what the requirements and the difficulties of a general
technique are, if this technique is to be adequate to effect the substitution of
subroutines into routines in the typical situations.

12.4 The discussion of the precise way in which subroutines can be
used, i.e. substituted into other routines, centers around the changes which have
to be applied to a subroutine when it is used as a substituent.

These changes can be classified as follows:

Some characteristics of the subroutine change from one substitution of
the subroutine (intc a certain routine) to another one {into another routine), but
they remain fixed throughout all uses of the subroutine within the same substitu-
tion {i.e. in connection with one, fixed routine). These are the changes of the
first kind., Other characteristics of the subroutines may even vary in the course

of the successive uses of the subroutine within the seme substitution. These are
the chenges of the second kind. -

Thus the order position at which a subroutine begins is constant through-
out one substitution (i.e. routine, or, equivalently, one larger problem of which
the subroutine’s problem is part), but it may have to vary from one such substitution
or problem to another. The first assertion is obviously in accord with what will be
considered normal usage, the second assertion, however, needs some further elaboration.

If a given subroutine could only be used with its beginning at one parti-
cular position in the memory, which mast be chosen in advance of all its applications,
then its usefulness would be seriously limited. In particular, the use of several
subroutines within one routine would be subject to very severe limitations. Indeed,
two subroutines could only be used together, if the preassigned regions that they
occupy in the memory do not intersect. In any extensive "library" of subroutines
it would be impossible to observe this for all combinations of subroutines simml-
tanecusly. On the other hand, it will be hard to predict with what other subroutines
it may be desirable to combine a given subroutine in some future problem. Further-
more, it will robably be very important to develop an extensive "library" of sub-
routines, and to be able to use it with great freedom. All solutions of this dilemma
that are based on fixed positioning of subroutines are likely to be clumsy and of
insufficient flexibility.

Hence we should postulate the variability of the initial order position
of a subroutine from one substitution to anather. Consequently this is an example
of a change of the first kind. This requires corresponding adjustments of all
references made in orders of the subroutine to definite (order or storage} positions
within the subroutine, as they occur in the final form (the final enumeration) of its
coding. These adjustments are, therefore, changes of the first kind.

The parameters or free variables of the problem that is represented by
the subroutine (cf. 7.5) will, on the other hand, nsually change from one use of
the subroutine (within the same substitution, i.e. the same main routine ar problem)
to another. The same is true for the order position in the main routine, from which
the control has to continue after the completion (of each particular use} of the
subroutine. Since the subroutine sends the control after its completion to e {(this
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is the notation that we have used in all our codings up to now, and we propose to
continue using it in all subsequent codings), this observation can also be put as
follows: The actual value of e will usually change from one use of the subroutine
to another.

These remarks imply, that the parameters of the subroutines problem, as
well as the actual value of its e, will usually undergo changes of the second kind.

12,5  All the changes that the use of a subroutine in a given substi-
tution requires can be effected by the routine inte which-it is being substituted,
i.e. by including appropriate coded instructions into that routine. For changes of
the second kind this is the only possible way. For changes of the first kind, how-
ever, it is not necesspry to put this additional load on the main routine. In this
case the changes can be effected as preparatory steps, before the main routine it-
self is set in motian. Such preparations might be effected cutside the machine
{possibly by manual procedures, and possibly by more or less automatic, special,
subsidiary equipment). It seems, however, much preferable to let the machine itself
do it by means of an extra routine, which we call the preparatory routine. We will
speak accordingly of an internal preparation of subroutines, in contradistinction
to the first mentioned outside process, the external preparation of subroutines.

We have no doubt that the internal preparatiaon is preferable to the external one
in all but the very simplest cases.

Thus changes of the first kind are to be effected by preparatory routines,
which will be discussed further beliow. Changes of the second kind, as we have
pointed out already, have to be effected by the main routine itself (into which the
subroutine is being substituted): Before each use that the routine makes of the
subroutine, it must appropriately substitute the quantities that undergo changes
of the second kind {the parameters of the subroutines preblem and the actual value
of its e, cf. the discussion in 12.4), end then send the control to the beginning
of the subroutine {usually by an unconditional transfer order). It may happen that
some of these quantities remain unchanged throughout a sequence of successive uses
of the subroutine. In this case the corresponding substitutions need, of course,
be effected once, jointly for the entire sequence. If this seguence includes all
uses of the subroutine within the routine, then the substitutions in question need
only be performed once in the entire routine, at any sufficiently early point in it.
In this last case we are, of course, really dealing with changes of the first kind,
and the quantities in gquestion could be dealt with outside the main routine, by a
preparatory routine, It is, however, sometimes preferable to view this case as
an extreme, degenerate form of a change of the sec md kind, or at any rate to
treat it in that way.

This discussion should, for the time being, suffice to clarify the
principles of the classification of subroutine changes, and of the effect which
they (specifically: the changes of the second kind) have on the arrangements in
the main routine (into which the subroutine is being substituted). We now pess
to the discussion of the preparatory routine, which effects the essential changes
of the first kind: The adjustments that are required in the subroutine by the
variability of its initial order positioen.
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12.6  Assume that a given subroutine has been coded under the assump-
tion that it will begin at the order position a. (I.e. at the left-hand order of
the word a. To simplify matters, we disregard the possibility that it may begin
at the right-hand order of the word a. In our past codings we had usually a = 0,
excepting Problem 2 where a = 100, Problems 13,a-c¢ where a = 52, and Problem 15
where a = 42.) The orders that are contained in this subroutine can now be classified
a3 follows:

First: The order contains no reference to a memry position x. It is then
one of the orders 10, 20, 21 of Table II.

Second: The order contains a reference to a memory position x, but the
place of this x is irrelevantly occupied in the actual code of the subroutine. In
this case the subroutine itself must substitute appropriately for x, before the
control gets to the order in question. I.e. some earlier part of the subroutine
must. form the substitution value for x, and substitute it inte the order.

Third: The order contains a reference to 2 memory position x, the place
of this x is relevantly occupied in the actual code of the subroutine, and this
actueal value of x corresponds to a memory position mot in the subroutine.

Fourth: Same as the third case, except that the actual value of x
corresponds to a memory position in the subroutine.

Fifth: One of the preceding cases, but at some point the subroutine
treats the order or its x as if it were irrelevantly occupied, i.e, it substitutes
there something else. ----

Assume next, that the subrouvtine, although coded as if it began at a, 1s
actually to be used beginning at a. This necessitates certain changes, which are
Jjust the ones that the preparatory routine has to effect, in the sense of the con-
cluding remark of 12.5. Qur above classification of the orders of the subroutine
permits us to give now an exact listing of these changes.

Orders of the first and of the third kind require clearly no change.
The same is true of the orders of the second kind if they produce x’s which
correspond to memory positions not in the subroutine. And even if x's are
produced which correspond to memory positiops in the subroutine, no change is
necessary if the following rule has been observed in coding the subroutine:
a was used explicitly in forming the x that corresponds to pesitions in the
subroutine, and it was stored not as the actual quantity a, but as a parameter
of the subroutine’s problem. If it is then understood, that this parameter should
have the value &, then it will be adequately treated as a parameter in the sense
of 12.5. Indeed, it represents that degenerate form of a change of the second
kind, which can also be viewed as a change of the first kind, as discussed in 12.5.
Thus it might be treated by a special step in the preparatory routine, but we
prefer to assume, in order to,simplify the present discussion, that it is handled
as a parameter (of the subruut.:me] by the main routine. In this way the orders
of the second kind require no change either (by the preparatory routine),
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Orders of the fourth kind clearly require increasing their x by a - a.

Orders of the fifth kind behave like a combination of an order of ome of
the four first kinds with an order of the second kind. Since all of these orders
are covered by the measures that emerged from our discussion of the four first kinds
of orders, it ensues that the orders of the fifth kind are automatically covered, too,
by those measures.

Thus the preparatory routine has precisely one task: To add & - a to the
x of every order of the fourth kind in the subroutine.

12.7 The next question is this: By what criteria can the preparatory
routine recognize the orders of the fourth kind in the aubroutine?

let I be the length of the subroutine. By this we mean the number of
words, both orders and storage, that make it up. We include in this count all
those words which have to be moved together when the final code {final enumeration)
of the subroutine is moved (i.e. when its ipitial order position is moved from a
to a), and no others. The count is, of course, made on the final enumeration.
In this sense a word counts fully, even if it contains a dummy order {e.g. 14 in
Problem 6, and 6 in Problem 10 or 74, 91 in Problem 13.b). On the other hend
storage positions which are being referred to, but which are supposed to he parts
of some other routine, already in the machine {i.e. of the main routine, or of an-
other subroutine} do not count {e.g. the storage area A in Problem 3 or the storage
area A in Problem 10),

For an order of the fourth kind x must have one of the values
8, ..., atf-1, i.e. it must fulfill the condition

(1) agx<at].

For an order of the third kind x will not fulfill this condition. For orders of
the first and of the second kind the place of x is inessentially occupied.
Concerning its relation to condition (1) we can make the two following remarks:

First: We can stipulate, that in all orders where the Eosxbion of x is
1nessent1ally occupied, x should actually be put in with a value x° that violates
{1}). This is a perfectly possible convention. The simplest ways to carry it
into effect are these:

Let x° always have the smallest value or always have the largest value
that is compatible w1t,h its 12- dlglt, character, (ﬂegardmg the latter, cf.
section 6.2.) I.e. = 0 or x® = L-1, where L-1 is the largest 12-digit integer:
L =22 = 4,09. 'ﬁxen all subroutines must fulfill a # 0 or a *I 7L, respectively
{in order that (1) be viclated).

These rules are easy to observe, We chose a = 0 in most of our codes,
hence we might prefer the second rule, but this is & gquite unimportant preference.
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Second: If en order of the first or of the second kind has an x which
fulfills (1), and the order is thereupon mistakenly taken (by the preparatory
routine) for one of the fourth kind, and its x is increased by & - a, this need
not matter either. Indeed: The place x is irrelevantly occupied,hence changes
which take place there before the subroutine begins to operate do not matter.
There is, however, one possible complication: Adding a - a to this (inessential)
x may produce a carry beyond the 12 digits that are assigmed to x. (Regarding
these 12 digits cf. above, and also orders 18, 19 of Table II and the second
remark among the Introductory Remarks to Chapter 10. The carry in question will
occur if 2 - 2 >0 and x 2L - (3-a), or if 8- a <0 and x < - (§-a); L = 212,
cf. above.) Such a carry affects the other digits of the order, and thereby modi-
fies its meaning in an undesirable way. This complication can be averted by
special measures that paralyze carries of the type in question, but we will not
discuss this here. No precsutions are needed, if we see to it that no such
carries occur. (I.e. if we observe -{3-a) $ x £ L - (g-a) for the inessential
x, cf. above.) ----

In view of these observations we may accept {1) as the criterium
defining the orders of the fourth kind. We will therefore proceed on this basis.

12.8  We have to derive the preparatory routines which are needed to
make subroutines effective. For didactical reasons, we begin with a preparatory
routine which can only be used in conjunction with a single (but arbitrary) sub-
routine, Having derived such a single subroutine preparatery routine, we can
then pass to the more general case of a preparatory routine which can be used in
conjunction with any number of subroutines. This is a general, or multiple
subroutine preparatory routine. The point in all of this is, of course, that both
kinds of preparatory routines need only be coded once and in advance -- they can
then be used in conjunction with arbitrary subroutines.

We state now the problem of a single subroutine preparatory routine.
This includes a description of the subroutine, in which we assume that the sub-
routine has been coded in conformity with the (not a priori necessary) conventions
that we found convenient to observe in our codings in these reports. It does not
seem necessary to discuss at this place possible deviations from these conventions,
and the rather simple ways of dealing with them.

PROBLEM 16.

A subroutine I consisting of [ consecutive words, of which the k first
cnes are {two) order words, is given. {Concerning the definition of the length of
a subroutine, cf. the beginning of 12.7. The subroutine under consideration may
also make use of stored quantities, or of available storage capacity, outside this
sequence of I words -- or rather of the [ -k last ones among them. We need not
pay any attention to such outside positions in this problem.) This subroutine is
coded as if it began at the memory position a. Actually, however, it is stored
in the memory, beginning at the position a. It is desired to modify it so that
its coding conform with its actual position in the memory. ----
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Our task consists in scanning the words from @ to a tk -1, to inspect
in each one of these words the two orders that it contains, to decide for each
order whether its x fulfills the condition (1) of 12.7; and in that (and only in
that) case increase this x by X = & - a.

Let the memory position u be occupied by the word w . w, is then an
aggregate of 40 binary digits:

wo= Lw D, w @, ., W (40) ).

The two orders of which it consists are the two 20 digit aggregates
[Wu(l), ceey wn(20)} ) {w'(zl), vey w“(40)j .

the two x in these orders are the two 12 digit aggregates

w& = {wufg], iy w'(ZUJ}, wil = {w.(29}, ceey wl(40)]

(cf. orders 18, 19 of Table I1).

Reading w:, w{l as binary numbers with the binary point at the extreme

left {and an extra sign digit 0), the condition (1) of 12.7 becomes

(1) 2-125 ¢ w: <2-1% (a + ]},
and
(2) 2-12, ¢ W:I <212 (5 + ),

Reading w_ as we ordinarily read binery aggregates, i.e. as a binary number with
the bhinary point between the first and second digits from the left (the first
digit being the sign digit) we can now express our task ag follows: If (1) or
(2} holds, we must increase w_ by 2-1% or 2-3%, respectively. I.e.

(3) : = W, +2-1% if {1) holds,
Y = oW, otherwise,

) | = wl o+ 27%% if (2} holds,
i = w otherwise.

Note, that we may replace (2), for its use in (4), by

(2') 2-125 ¢ w!ll 2 2-12 (4 + 1),
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where

= {w:(l), w;@), cies w;(40)} s
wiil = { w1(29), ..., wi(40)},
20 2-39

since w_ and'w have by (3) the same digits with the positional values 2
i.e. with the numbers 21, .. , 40,

The words w_with which we have to deal are in the interval of memory
locations a +%,..., a +% +k - 1 (i.e. &, ..., a +k - 1, cf. above). Let this
be the storage area O, we will index it witha u =a +X,..,, e +® +k - 1, 30
that O.u corresponds to u, and stores w_. This u has the character of an induction
index,

Further storage capacities are required as follows: u {as u, ) in A, the
w' under consideration (and w' after it} in B, the given data of the groblem,
L, k, %, in C. (It will be convenient to store them as 2-19,, 2-13f, 2-1%,
2'19'&. Begarchng these quantities cf. also further below. ) St.ora§e will also
" have to be provided for various other fixed quantities (-1, 1,, 2-7,6 2-12 2-3%)
these too will be accomodated in C,

We can now draw the flow diagram, as shown in Figure 12.1. In coding
it, we will encounter some deviations and complications which should be commented
on. :
e, I, k, ¥ mst occasionally be manipulated along the lines discussed
in connection with the coding of Problem 13.a. Thus in the case of K transitions
to 2°3% and to %o occur, and these would be rendered more difficult if we had to
allow for the possibility ¥ < 0. In order to avoid this rather irrelevant compli-
cation, we assume

(5) xzl, ie aza

This has the further consequence, that the difficulties referred to in 12.7 can
be avoided by giving every irrelevant x the value 0 {because of the second
remark in 12.7) or the value L -1 {because of the first remark in 12.7}, We
also note this: (5) can be secured by putting all a = 0, i.e. by coding every
subroutine as if it began at 0, but we will not insist here that this convention
be made.

The conditions (1), (2') can be tested by testing the signs of the
quantities

w: - 2'123, w: - 2-12(8 “‘I). w;[l - 2-123’ wiii 2"”(&“’1)

u
or, equivalently, the signs of the guantities

2wl . 2719, 279l L 2:19(a +yy, 27TWITE - 2-V%, 2°Te L 22190 +))
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It is eesily seen that replacing 2-'%a, 2-1%(a +1) by ay, la*I}, vitiates these
sign-criteria, but replacing

W= (n,(9), ..., w, (20))

by
wl + e, = {wn(g), vers wnizo); wu(21), cens wu(40)]

does not have this effect. It is convenient to use wi + € in place of w:.

Both quantities wl +€ and w'“ mist be read as binary numbers with
the binary point at the extreme left with an extra sign digit 0. Indicating
this sign digit, toc, we have

w§+8u={0, w“(g),...,w(‘lm}.
(6) *
wllr = {0, wl(29}, . w;(40)] .

¥With the same notations

0

(7)
-L w: {wu(l}, wn(ZJ, . w;[40) } .

1l

f w“(ll, wu(2), ey wl{40J] .

In order to get the w: +E w'” of {6) from the w o w! of (7), it seems simplest
to mltiply w , w! by 2° 32, 2‘12, respect:wely, and to ;uck up wl * g, in the
register (cf. order 11 of Table II). There is, however, one minor complication
at this point: The register contains not the wz +E, w"lu of (6), but the
aggregates

{w, (9), w (9), wtl0), ..., w(40)},
(6')
{ w;(29), w;(29), w:{3UJ, cen, w:{40) }.

The simplest way to get from (6') to (6) is to sense the sign of each quantity of
(6), and to add -1 to it if it proves to be negative (i.e. if the sign digit is 1).
We will do this;it requires an additional conditional transfer in connection with
each one of the two boxes III and VI. For this reason two boxes III.1 and VI.1,
not shown in the flow diagram, will appear in our coding.

To conclude, it is convenient to change the position of IX somewhat
{it follows upon VIII and absorbs part of it) and to absorb XI into X (it is
replaced by X,9).
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Owv W, for arkSy<u

O.v wy
4 W, otherwiss
; I *
! p A Uy
®—>—‘ (a+x), to A E2Y 3 1 -
.
| | =r -+ W, to B
(s+1), to A > w1~ « 3 JM-
°4
IX
- X ¢ ¢ [wi=w
6 ’ -a-K-ht1 2 < @™ e
@ T {47 ] to C.u
. i + t
] !
o.v wf;'ﬁ»- ar*ks v<arxvb o.v u;,” fr- a+XSvE

W, otherwise

Wy otherwise

(74

a,ﬁ,i,x

Ficure 12.1
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The static coding of the boxes I-XI follows:

C.]. 2'\193
Cc.2 92-19
L1 C.1 Ac 9-19,
2 C.2 h Ac 2-19(a4x)
3 s.1 Sp! s.1 2-3%(aw)
4 s.1 h Ac (a+1¢}u
5 A S A (a+x),
(to II,1)
I1,1 A Ac u,
2 I1,3 Sp 11,3 u
3 -
{ u ] Ac .
4 B 5 (o] .
{to III,1)
C.3 2-32
I11,1 C.3 R R 9-31
2 B x R {wn(9],w“(9},w“(10},...,wnMO)} =
= wﬂ.{g) + wlll * Eu
3 A Ac w (9) +wl+e
4 111.1,1 Ce
C.4 -1
IIL,5 C.4 h Ac w: e
(to II1.1L, 1)
C.5 2-7
Iri.1,1 C.5 R R 2-7
2 s.1 S 5.1 wi tE
3 s.1 x Ac 2"’(\1“'{I +e)
4 C.1 h- Ac 22wl +e ) 2717
5 Iv,1 Ce
(vo Vi, 1)
C.6 2-1%¢
v,1 C.6 h- Ac 2.1(“1: + Eu) _2-19(a+1f)
2 VI, 1 Ce
{to V,1)
vV, 1 C.2 Ac 9- 19
B h Ae w“"z'lgt(.:v,mr:l
B ) B ,,:
(to VI, 1)
C.7 2-12
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V1,1 C.7 R R 2-12
B x R {w: (29),w|:(29},w;(30),...,w:{m)} =
= w'(29) + wIII
u L
3 A Ac w!{(29) + w11
4 vI.1,1 Ce
5 C.4 h Ac w‘:"
{to VI.1, 1D
VI, 1.1 C.5 R R 2-7
2 5.1 5 s.1 w]:u
3 5.1 x Ac 2-7 il
4 C.1 h- Ac 2°7 w!ll 2-1%
5 V11,1 Ce
(to IX,1)
VII, 1 C.6 h- Ac 2-7 w! 11 -2-19(a4))
2 IX,1 Ce
{to VIII, 1)
VIII, 1 C.2 Ac 2-1%
2 s.1 Sp! s.1 2-3%
3 s.1 Ac 2- 3%
4 B h Ac wl o+ 2°10% =
5 B S B W
(to IX, 1)
X, 1 A Ac 1y
T2 X, 4 Sp X, 4 n Sp
3 B Ac "
4 - S
{ n 5 ] O.u w:
(to X,1) .
X1 C.1 Ac 2-1%
2 C.2 h Ac 2-19(a+x)
C.8 2-19%
X3 C.8 h Ac 2-1 % a+x+k)
4 s.1 Sp! s.1 2-3 % a*k+k)
5 8.1 h Ac {atkk)
6 s.1 S s.1 {a*+k)
K A Ac ug
C.s 1,
X,8 C.9 h Ac (utl),
g A S A (utl},
10 s.1 h- Ac (u-a-k-k+l},
11 e Ce
(to XI,1)
XI,1 -
(to 11,1)

.
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Note, that the box XI required no coding, hence its immediate successor
(IT) must follow directly upon its immediate predecessor (X).

The ordering of the boxes is I, II, ITI, ITI.1, VI, VI.1, IX, X; IV,
. ¥V: VII, VIHI, and VI, IX, II must alsc be the immediate successors of V, VIII, X,
respectively, This necessitates the extra orders

V,4 VI, 1 o
VIIL, 6 X, 1 c
X, 12 II,1 C

We must now assign A, B, C.1.9, s.1 their actual values, pair the 59
orders I,1-5, I1,1-4, III,1-5, II1.1,1.5, IV,1-2, V¥, 1-4, vI,1-5, VI.1,1-5, VII,1-2,
VIIL,1-6, IX,1-4, X,1-12 vo 30 words, and then assign I,1-X,12 their actual values.
We wish to place this code at the end of the memory, so that it should interfere
as little as possible with the memory space that is normally occupied by other
subroutines and routines. Let us therefore consider the words in the memory
backwards (beginning with the lest word), and designate their numbers (in the

reverse order referred to) by 1, 2,... . In this way we obtain the following
table:

1,1-5 2. VI.1,1-5 3 -28 VI, 1-2 -16
I1,1-4 40'-38 IX, 1-4 38'.26 VIII, 1-6 16'-13
I1,1-5 38'-36" X,1-12 26'-20 A 2

1,1-5 35 -33 v, 1-2 20'-19 B I

1,1-5 33 V,1-4 19'.17 C,1-9 10 -2

5.1 1
Now we obtain this coded sequence:
v I, Th 28 e, 12 14 IIh, IS
11 Isg, TIn b 26 S, 11 13 28C', -
10 s, B 26 -5, I 12 -
ki 3 s, - 35 Sh, 3Jh 11 -
38 s, &R 24 Isp, 1h 10 2-1%,
ki T x, A 73 is, 17 9 2-19
T BC, Th 22 Zh, IZS 8 2-12
35 ER, 18 31 1h-, eCe 7 -1
k! Tx, T0h- 2 @we, 5h 6 27
33 Mc, 4R 15 /o, I 5 2-197
32 Mx, _A i8 Or, IS 3 2-12
ki | WVCe, Th 7 33C', 5h- 3 2-1%
30 BR, 1Is 16 78C, O 2 1,
75 Tx, 0n- 15 Isp, 1 1 -

The durations may be estimated as follows:

I: 200 y, II: 150 p, TII: 250 g, III.1: 270, IV: 75 u, V: 150 p,
VI: 250 1, VI.1: 270 p, VII: 75 p, VEIII: 225 p, IX: 150 4, X: 450
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II+II+IIL1 + () or IV or IV+V)

Total: I + VI +VILY + (87 op VII or VII + VIID) x k =
+IX + X
150 + 250 + 270+ 75 + 150
maximm = { 200 + +250+270+75+225 | % )pn =
+150 + 450

H

(2,315 k + 200) p~.(2.3 k + .2) m.

12.9 We now pass to the multiple subroutine preparatory routine. The
requirements_for such a routine allow several variants. We will consider only the
bagic and simplest one. It is actually quite adequate to take care of most situa-
tions involving the use of several subroutines -- even of very complicated ones.
(Examples will occur in our future codings, in particular in Chapters 13 and 14.)

PROBLEM 17

Same as Problem 16 with this change: The modification is desired for
I subroutines 2,,..., Z;. The characteristic data for Z (in the sense of Problem
16) are a. 1.. ki’ . Each Z is stored as its a,, X., and I. indicate (cf,
Problem 16) the a. o fi. k., K (i = 1,..., I} are stored at 4Iksuitable, consecu-

1
tive memory locations. ----

In order to be able to use the treatment of Problem 16 in 12,8, we
assume in conformity with (5) in 12.8

(1} x, 20 foralli=1, ..., L

1
(Cf. also the other pertinent remarks loc. cit.)

i 1s the induction index, running from 1 to I. For each value of i
we have to solve Problem 16, We can do this with the help of our coding of that
problem, but we nust substitute the data of the problem, a . I. ., %., into the
npprapr1ate places. Inspection of the coded sequence shaws that tﬁese places
are 10, 3, 3, U, respectively.

We propose to place the coded sequence that we are going to develop
immediately before that ome of Problem 16, i.e. immediately before 42, ..., I.
Let P be the number of the memory location immediately before the coded sequence
that we are going to develop -- i.e., if the length of that sequence is X' and
the total memory capacity is L' (both in terms of words), then

(2) P= 83+ = L'-43 .p

*) represents the possibility of going directly from IIT via 4, 5 to VI,
or from V] via 3 to IX, respectively, with no other boxes intervening.

We will use this same notation in similar situations in the future.
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We will place the e, Ii, k,,x, (i =1, ..., I}, in the form 2'1gai, 2'19Ii, 2"19ki.

2-1%_, immediately before these coded sequences, and in inverse ¢ der, i.e. at
P-4i 43, P-4:43, P-4i+2, P-4i+l, respectively.

The induction index i will be stored in the form (P-4i+4)0 in the sta age
area A, The quantities P, I will be stored in the fomm P,, (P-4I), in the storage
aren B (1, will be needed and taken from 2).

We can now drew the flow diagram, as shown in Figure 12.2, The actual
coding obtains from this quite directly, box V is absorbed into box II {it is
replaced by II,10),

The static coding of the boxes I-V follows:

B.1 P,
1,1 B.1 Ac P,
2 A S A P,
(vo II,1)
I1,1 A Ac (P-4i+4),
2 11,11 Sp 11,11 P-4i+4
3 2 h- Ac (P-4i+3)
4 11,13 Sp 11,13 P-4i+3
5 2 h- Ac (P-4i+42),
6 II,15 Sp 11,15 P-4i+2
7 2 h- Ac (P-4i+1)
8 11,17 Sp 11,17 P-4i+1
9 2 h- Ac (P-4i)
10 A S A (P-4i)
11 -
[ P-4i+4 ] Ac 2-1%,
12 10 S 10 2-1%,
13 -
[ P-4i+3 1 Ac 2-191.
14 5 S 5 2-1%1,
15 -
[ P-4i+2 1 Ac 2-1%
16 3 8 3 2- 1%,
17 -
[ P-4+l ] Ac 2-1%,
18 E] S 9 219
(to ITI,1) '




j B to A

(P-4ilteA
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i—1I

2 * -
1> i
3
-=- A (P-4i+4)]
- a
ir1—> 1
6 *
I
B 22 ¢ 10
#—T |a|&"lh 3
(Boblem16)| |27k o 3
2'"?1:,» to §
O .P-4}+4 | Z"a;
P-4t+ra | 274;
P~41+2 fﬂ.&g
P-4i+1 | &7x;
Note: Numbers
42-1
refer te
42~1
in 12.7
Figure 12.2
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III (Problem 16: 42 . 1.)
(to IV,1)
B.2 (P-41),
w,1 B.2 Ac (p-41),
2 A h- Ac (4(i-1),
3 e Ce
(to V,1)
A\ ———-
(to II,1)

Note, that box V required no coding, hence its immediate successor (II)
mst follow directly upon its immediate predecessor (IV).

The ordering of the boxes is I, II, III, IV, and II must also be the
imnediate successor_of IV. In addition, III cannot be placed immediately after
II, since III,1 is 42 but IIT must nevertheless be the immediate successor of
I1. All this necessitates the extra orders

1,19 11,1 o
Iv,4 11,1 C

Finally, in order that IV be the immediate successor of III, the e of 42 - 1
(in 21) must be equal to IV,1,

We must now assign A, B.1-2 their actual values, pair the 25 orders
1,1-2, I1,1-19, 1V,1-4 to 13 words, and then assign I,1-IV,4 their actual valyes.
(III is omitted, since it is contained in 42 - I.) We wish to do this as a
(backward) continuation of the code of 12.8. In this way we obtain the following
table:

I,1-2 58 -58° 11,1-19 57 -8 A 5

v,1-4 48'-46 B.1.2 4 .
Thus, in terms of equation (2}, ' = 16 and
(21) P~ 59=L"-359

Now we obtain this coded seguence:
58 id , &S 53 Zh-, &S Il 2C, 3
Lt L5 L B5 52 . , 108 i 45 h-, e Ce
56 Z2h-, 5T S T . , §s 6 57C, .-
5 3 h, 50Sp % . . 3s B e
54 2h-, 8 i -, B9s 44 P,
43 (P-41)
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In addition 21 in 42 - I of 12.B must read
71 Th, B!
The durations may be estimated as follows:

I 75 IL: 725 u, 1IV: 150 y. _
III: The precise estimate at the end of 12.7 is

macmm = (2,315 k, + 200) u,

Total: I + _il (I + 1O + IV) =

(75+ 5 (725 + 2,315 k, + 200 + 150)) y =

i=1

maximam

(2,315 -51 k, + 1,075 1 +75) |y~

~23 § k+1L1Dn.

i=1

él k, is the total length of all subroutines. Hence it is necessarily
3

sL'$L=2%2=409. Actuslly it is unlikely to exceed, even in very camplicated
problems, the order == %L"‘-#—I,UOU. 1.1 T is negligible compared to 2.3 '2.1 k, .
3=

Hence
2,300 m = 2.3 seconds
is a high estimate for the duration of this routine.

12.10  Having derived two typical coded sequences for preparatory
routines, it 1s appropriate to say a few words as to how their actual use can
be contemplated. We do not propose to present a discussion of this subject.to
any degree of completemess -- we only wish to point out some of the most
essential aspects. Since the routine of Problem 17 is more general than that
one of Problem 16, we will base our discussion on the former.

The discussion of the use of preparatory subroutines is necessarily
a discussion of a certain use of the input organs of the machine. We have
refrained in our reports, so far, from making very detailed and specific assump-
tions regarding the characteristics of the input (as well as of the output)
organs. At the present juncture, however, certain assumptions regarding these
organs are necessary. Oh the basis of engineering developments up to date,
such assumptions are possible on a realistic basis. Those that we are going
to formilate represent a very conservative, minimam program.
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Qur assumptions are these:

As indicated in section 4.3, we incline. towards the use of magnetic
wire (soundtrack) as input (and output) medium. We expect to use it at pulse
rates of sbout 25,000 pulses {(i.e. binary digits) per second. We will certainly
use several input {and output) channels, but for the purposes of the present
discussion we assume a single one,

We assume that the contents of a wire can be "fed" into the machine,
i.e. transferred into its inmer, selectron memory, under manual control. We
assume that we can then describe by manual settings

1) to which memory position the first word from the wire
should go {the subsequent words on the wire should then
g0 in linear order into the successive, following memory
positions),

2) how many words from the wire should be so 2 U

We assume finally, that single words can also be "fed" directly into
the machine by typing them with an appropriate "typewriter". (This "typewriter”
will produce electrical pulses, and will be nearly the same as the one used to
write" on the magnetic tape.) We assume that we can determine the memory
position to which the typed word goes by manual settings.

The last assumption, i.e. the possibility of typing directly into the
memory, s not absolutely necessary. It is alternative to the previously
mentioned "feeding" of words from a magnetic wire. When longer sequences of
words have to be fed, the wire is preferable to direct typing. When singie
words, irregularly distributed, have to be fed, however, then feeding from
appropriate wires would still be feasible, but definitely more awkward than
direct typing. In addition, the possibility of direct typing into the memory
is probably very desirable in connection with testing procedures for the
machine. We are therefore assuming its availability.

These things being understood, we ¢an describe the procedure of
placing &, presumably compasite, routine into the machine. It consists of
the following sateps:

First: There are one or more constituent routines: The main routine
and the subroutines, where it is perfectly possible that the subroutines bear
further subordination relationships to each other, i.e. are given as a hierarchy.
All of these are coded and stored on separate pieces of magnetic wire.

These are successively fed into the machine, i.e. into the inner
memory. The desired positions in the memory are defined by manual settings.

*) These operations should also be feasible under the "inner", electromic
control of the machine. We will discuss this aspect of the input-output
organ, and the logical, code orders which circumscribe it, in a subsequent
paper (Part III in this series).
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Second: The multiple subroutine preparatory routine (Problem 17) is
also coded and stored on an individwal magnetic wire., (It is, of course, assumed
to be part of the library of wires mentioned in section 4.6,)

This is also fed into the machine, like the "constituent" routines of
the first operation, described above. As observed in 12.8 and 12.9 it has to be
positioned at the end of the memory.

Third: The constants of the multiple subroutine preparatory routine,
i.e. of Problem 17, are typed directly into the memory. They are the following
ones:

1) The number of subroutines, I, which is put in the form (P-41},
into the position

3=1"-43 =P + 16.

2} The 4I data which characterize the I subroutines: a,, I., k., X.
(i = 1,...,I), which are put in the form 2-1% , 2°1%7, 219,
2-1%. into the positions P-4i+4, P-4i+3, P-4i+}, P-4i+], '
respectively.

Fourth: The machine is set going, with the camtrol set manually at
the beginning aof the preparatory routine (58 = L'-48 = P+1), and the adjust-
ment of all subroutines to their actual positions {in the sense of 12,5-12.7)
is thus effected.

Fifth: Any further adjustments which are necessitated by the
relationships of the subroutines to each other {(cf. the first operation, as
described above, and the fifth remark in 12.11} are made by typing directly
into the memory. ----

After all these operations have been carried out, the machine is
ready to be set going on the {(composite) routine of the problem itself The
preparatory routine {(in the 58 last memory positims) and its data (in the 4I
preceding positions) are now no longer needed. I.e. these positions may now
be viewed, from the point of view of the problem itself, as irrelevantly
occupied. They are accadingly available for use in this sense.

12.11  We can now draw some conclusions c mcerning the setting-up
procedure for a machine of the type contemplated, on the basis of the dis-
cussion of 12,10, We state these in the form of five successive remarks.

First: The pure machine time required to feed the {main and subsidiary)
‘routines of the problem into the machine may be estimated as follows: A word
csists of 40 pulses. For checking and marking purposes it will probably have to
contain some additional pulses. With the systems that we are envisaging, a total
of, say, 60 pulses per word will not be exceeded. With the speed of 25,000 pulses
per second, ‘as &ssumed in 12,10, this gives 2.4 m per word.
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Thus the pure machine time of the first and second operations of 12,10
is 2.4 m per word.

The pure machine time of the third operation of 12.10 is, as we saw at
the end of 12.9, 2.3 m per word.

We also observed at the end of 12.9, that even in very complicated
problems the number of words thus involved is not likely to exceed 1000. This
puts on the total time requirement on these counts an upper limit of
2.4 +2.3 =47 seconds, i.e. of less than 5 secands.

Second: These time requirements are obviously negligible compared to
the time consumed by the attendant manual operations: The placing of the magnetic
wires into the machine, the setting of the (memory) position definitions, etc.

It follows therefore, that there is no need and no justification for
any special routine-preparing equipment (other than the typing devices already
discussed) to complement a machine of the type that we contemplate.

Third: Assuming a composite routine made up of ten parts, i.e. of a
routine and nine subroutines, we have I = 9. This represents already a verv high
level of complication. The preparatory routine requires 58 + 4I words, i.e. for
I =9 9 words. This represents 2.3% of the total (selectron) memory capacity,
if we assume that the latter is L' = 2-12 = 4 096.

Fourth: Each subroutine requires the direct, manual typing of four
words into the machine (for a_, Ii' k., ¥.}, as well as one for all subroutines
together {for I}. In addition the changes of the second kind in the sense of
12.4, i.e. those which the main routine must effect on the subroutine, require
severa] words. Indeed, the sending of the control to the subroutine requires
one order, i.e. half a word. Any number is sent there at the price of two
orders (bringing the number to be substituted into the subroutine into the accu-
mulator, substituting it into the subroutine) and of possibly one storage word
(for the number to be substituted), i.e. of a total of one or two words. There
will usually be three or more such number substitutions (the e of the subroutine,
i.e. the memory position in the main routine from where the control is to con-
tinue after the completion of the subroutine, and two or more data for the sub-
routine). Thus five words for these changes is a conservative estimate.

A subroutine consumes therefore tem words in extra instructions, by
a canservative estimate. It seems therefore, that the storage of a subroutine
in a library of wires, in the sense of section ¢.6, and its corresponding
treatment as an individual entity becomes justified when its length in words
is significantly larger than 10, A minimum length of 15-20 words would there-
fore seem reasonable.

To conclude this discussion, we observe that in meking these estimates,
we disregarded all operations other than the actual, manual typing of words {on
wire or into the machine). This is legitimate, because the time and the memory
requirements of the automatic operations that are involved are negligible, as we
saw in our three first remarks.
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Fifth: We pointed out in our description of the first operation in 12,10,
that the various subroutines used in connection with a main routine, mey bear further

subordination relationships to each other. In this case they will also contain actual

references to each other, and these will have to be adjusted te the actual positions
of the subroutines in question in the memory. These adjustments may be made as
chenges of the second kind, in the sense of 12.4, by the routines involved, They may
also be handled by special preparatory routines. We expect, however, that it will be
simplest in most cases to talke care of them by direct typing into the memory, as
indicated in the description of the fifth operation in 12.10,

The adjusting of the references of a subroutine to itself, to the actual
position of the subroutine in the memory, might also have been made by direct typing
into the machine. We chose to do it automatically, however, by means of a prepara-
tory routine, because these references are very frequent: The great majority of all
orders in a subroutine contain references to this same subroutine. Beferences to
another subroutine, on the other hand, are likely to be rare and irregularly
distributed. They are therefore less well suited to automatic kreatment, by a
special preparatory routine, than to ad hoc, manual treatment, by direct typing
into the machine.

Actual examples of such situations in #hich it will also be seen that
the proportions of the various factors involved are of the nature that we have

anticipated here, will occur in the subsequent chapters, and in particular in
Chapters 13 and 14,




