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Chapter I
VARIATION OF HODGE STRUCTURE

Phillip Griffiths
Written by Loring Tu

81. Hodge structures

Let X be a compact Kihler manifold (e.g., a smooth projective
variety). A C™ form on X decomposes into (p,q)-components according
to the number of dz’s and dz’s. Denoting the C* n-forms and the
C*® (p,q)-forms on X by AMX) and AP:9(X) respectively, we have the

decomposition
A'X) = @ APIX).
p+q=n

The cohomology HP'4(X) is defined to be

HP:(X) = {closed (p,q)-forms}/{exact (p,q)-forms}
= {¢ eAP9(X) : d¢p = 0}/dAM 1(X) N AP I(X) .

THEOREM 1 (Hodge Decomposition Theorem). Let X be a compact
Kéhler manifold. Then in each dimension n the complex de Rham

cohomology of X can be written as a direct sum

HprX.0) = @ HPUX).
ptq=n

REMARK 2. One can define a decreasing filtration on A"(X) by
FPAY(X) = A™O(X) @ ... ® APIP(X)

and a decreasing filtration on H%R(X) by
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FPHY (X) = H»Y(X) @ -.. @ HP/OP(X) .
The group FPH%R(X) may also be described as
FPH L(X) = (¢ FPA™(X):dgp =03/dA™ 1 n FPAY(X) .

It has been found useful to extract the contents of the Hodge decom-
position theorem into a definition, for it is not only the complex cohomolo-

gy of a compact Kahler manifold that possesses such a decomposition.

DEFINITION 3. A Hodge structure of weight n, denoted {HZ,Hp’qi, is
given by a lattice HZ of finite rank together with a decomposition on its

complexification H = HZ®C :

H= @ HPA
p+gq=n

such that

HP9 - H9.P |

Here by a lattice of finite rank we mean simply a finitely generated free
Abelian group.

Alternatively a Hodge structure of weight n can be given by a lattice
HZ of finite rank together with a decreasing filtration on its complexifica-
tion H = HZ®C :

H=F’F!>..oF0
such that
H ~ FP o F-P+1

The two definitions are equivalent, for given a decomposition

H = @ HP'9, one defines the filtration by

FP = "% ... o P2 P

B

VARIATION OF HODGE STRUCTURE 5
and given a filtration {Fp§p=0 ... n» one defines the decomposition by

HP9 = FPOFY

It is not difficult to check that these constructions satisfy the requisite
properties. We may therefore denote a Hodge structure of weight n either
by {HZ, HP9} or by {HZ,FP}. The HP:9 are called the Hodge compo-
nents of H and the filtration {FP} the Hodge filtration of H.

REMARK 4. By thinking heuristically of FP as forms possessing at
least pdz’s, the various superscripts become more intelligible. For
example, F4 would be forms possessing at least q dz’s . Since the
total weight is p+q =n, FPNFY consists of forms having precisely
pdz’s and q dz’s. Similarly, FY" P+l consists of forms having at least
n - (p-1) dz’s, or equivalently at most p-1 dz’s; consequently,

FPeF" P+l encompasses all n-forms.

EXAMPLES OF HODGE STRUCTURES. (a) (Hodge [8]). Let X be a
compact Kéhler manifold. For any integer n take
HZ = HY(X, Z)/torsion .
Then
H-= HZ®C =HppX,0) = @ HPYX),
pt+g=n

and {HZ,Hp’q(XH is a Hodge structure of weight n.
(b) (Deligne [3]). As in (a) but with X any smooth complete abstract
algebraic variety over C. (Such a variety need not be Kihler, since it
may admit no embedding into a projective space.)

A polarized algebraic variety is a pair (X, w) consisting of an alge-
braic variety X together with the first Chern class w of a positive line
bundle on X. Let

L:H%X,0) - H™%(x,C)
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be multiplication by . We recall below two fundamental theorems of
Lefschetz.

THEOREM 5 (Hard Lefschetz Theorem). On a polarized algebraic variety

(X, w) of dimension d,
Lk:Hd"k(X,C) 5 Hd+k(X,C)
is an isomorphism for every positive integer k <d.
Thus
Ld—n {HY(X,C) - sz"n(X,C)

is an isémorphism. The primitive cohomology P"(X,C) is defined to be
the kernel of Ld"n"'1 . (For the geometric interpretation of this definition,
see [6, p. 122].)

THEOREM 6 (Lefschetz Decomposition Theotem). On a polarized alge-
braic variety (X, ®), we have for any integer n the following

decomposition:
n

2
H'X,0 ~ g L 2kx,c).
k=0
It follows that the primitive cohomology groups determine completely

the full complex cohomology.

Let (X, ) be a polarized algebraic variety. Define

H, = PR, 0O NHYX, 7)

YA

and
HP4 - P(X,0)NHP9(X) .

Then {HZ, HP/9} is a Hodge structure of weight n. On this Hodge struc-

ture there is a bilinear form

Q:HZXHZ Y/

e

R
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given by

Qp, ¥) = (-Hr-1)/2 f b Aatya wdn

X

This bilinear form makes {HZ, HP/9} into a polarized Hodge structure in

the following sense.

DEFINITION 7. A polarized Hodge structure of weight n, denoted
{HZ, HP9, 01} or {HZ, FP,Ql, is given by a Hodge structure of weight n

together with a bilinear form

Q:HZXH -7,

Z

which is symmetric for n even and skew-symmetric for n odd, satisfying

the two Hodge-Riemann bilinear relations:

(8) Q(Hp’q,Hp,"q’) = 0 unless p’: n-p aI‘ld q’:. n-q ,
® W-DP Qe 'Z) >0 for any nonzero element i in HPQ .

We define the Weil operator C:H »H by

Cl pq = VDPI.

uP4

For example, C(dz) =idz and c(dz) = -idZ. In terms of the Hodge

filtration {FP} the bilinear relations are
(10) QEFP,F ) - 0,
11) Q(Cy, 171) >0 for any nonzero element ¢ in H.
This bilinear form Q is called a polarization on the Hodge structure.

Two basic constructions and their relation with cycles
We can associate to a Hodge structure {HZ, HP'9} of weight n one

of two objects depending on whethe; n is even or odd.
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(i) I n =2m, then the Hodge group is

m,m _ m,m
HZ = HZ NH .

An element of the Hodge group is called a Hodge class. The rank of the

Hodge group HIZ’1 is called the Picard number of X.

To motivate what is to follow, we recall the construction of the
Jacobian of a curve. Let C be acurve and y a l-cycle on C. Integra-

tion of holomorphic 1-forms over y

coe—»f ®, meHO(C,Ql),
Y

defines a linear functional on HYC, Q1). Thus there is a map H,(C,Z) -

(HO(C, Ql))*. The Jacobian of C is

j) = HAC. Q)"
H,(C, 7)

Making the identifications

(HO(C,QI))* ~ (HI,O)* o HO,I
and

H, ~ H(C,Z),

Z

we can write
J©) = H\H™ .
Now we come to the construction of the intermediate Jacobian.
(ii) ¥ n =2m-1, then
H = H2m—1,Oe “: eHm,m—l ® Hm—l,me vee eHO,Zm—l

‘\,—’

Fm

o e
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and the intermediate Jacobian of H is

] = HZ\ (second half of Hodge decomposition)

fl

m
HZ\H/F .

These two constructions, the Hodge group and the intermediate
Jacobian, are closely related to the study of algebraic cycles on a smooth
variety. Let X be a smooth algebraic variety. Two cycles Z, and z,
on X are algebraically equivalent if, roughly speaking, one can be
deformed into the other via an algebraic family of cycles on X. To be
more precise, there is an algebraic variety S and an algebraic cycle T
in SxX such that Z; and Z, are the restrictions of T to two fibers
of the projection 7:SxX »S (see Figure 1). It may not be possible to

choose T effective even when Z, and Z, are.

+

———
z, 2,
X
I
Ty
4 + S
1 )
Figure 1

Two cycles are rationally equivalent if they are algebraically equivalent

with a chain of Pl’s as the parameter space S (Figure 2).

Figure 2
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Let Z™(X) be the Abelian group generated by the codimension m
reduced and irreducible subvarieties of X. An element of Z®(X) is a
codimension m algebraic cycle. Denoting by Z?(X), z;n(X) , and

}T(X) the codimension m cycles rationally equivalent to zero, algebrai-
cally equivalent to zero, and homologically equivalent to zero respectively,

there is a sequence of inclusions

ZM(X) C ZM(X) € Z(X) C Z™(X) .

If Z is a cycle of codimension m on a variety X of dimension d,
one can associate to the homology class of Z a fundamental class
f({z)) € H%’m as follows. Let zreg be the regular points of Z. Integra-

tion over Z., defines a linear functional on Hz(d_m)(X) :

g

12) AN f v, ¥ e A2G-m)xy |
VA
reg

By Poincar€ duality, this linear functional f(Z) may be identified with
an element of H2m(X, Z). Because on a variety of dimension d a
2d-form must be of type (d,d), the form ¥ in (12) can be taken to be in
Ad_m’d_m(X). Hence

f(Z) e(Hd"m’d_m(X))* o~ Hm,m .

If Z is homologous to zero, then by Stokes’ theorem, the integral of a

closed form over Z is zero. We have, therefore, a map
£.gm m L ym,m
X)/ZX) » ™,

called the fundamental class map.

Next we take up the relation between cycles and intermediate Jacobians.

Given a smooth variety X of dimension d, the mth intermediate Jacob-
ian J™X) is defined to be the intermediate Jacobian of the cohomology
H2m—1(x):

]m(X) - Hm—l,mmm $H°'2m—1(X)/HZ .

N
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By Poincar€ duality there is a canonical identification
Jm(x) - (Fd—m+1 H2d—2m+1(x))*/A* ,

where A* is the image of the map

a:iHyg ,m (X, Z) » (H24-2mHI(x))*

given by integration. Our choice of the superscripts is dictated by the

definition of the Abel-Jacobi map for codimension m cycles:
u: ZPX)/ZNX) » J™X)

If Z is a cycle homologous to zero in X, then Z = JI" for some chain
I' of dimension 2(d-m) + 1. We define u(Z) by

(13) wZ) @) = f Y forall ¢ in A2y
r

If I" is not a manifold, this integral is taken in the sense of currents.
Liebermann ([9] and [10]) showed that all this makes sense.

An element of H(X, Q) N H™™ is called a rational Hodge class. By
tensoring with Q, the fundamental class map can be defined over ().
The Hodge conjecture asks whether every rational Hodge class is the
fundamental class of some algebraic cycle with rational coefficients.
(There are counterexamples for torsion integral classes. See Atiyah and
Hirzebruch, ¢ ‘Analytic cycles on complex manifolds,’” Topology 1 (1962),
25-45.)

The codimension one case of the Hodge conjecture is answered by the

following theorem of Lefschetz.

THEOREM 1.14 (Lefschetz Theorem on (1,1)-Classes). Let X bea
smooth projective variety. Then every integral (1,1)-class on X is the

fundamental class of a divisot on X.
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Before considering some low-dimensional examples of the Hodge group
and the intermediate Jacobian, we want to identify two of the intermediate
Jacobians. On a smooth variety X of any dimension d there is the

exponential sequence

0—7—0Pox __,p.

From the associated long exact sequence

> HY(X,Z) » HY(X,0) - H'(X,0%) » H2(X,Z) » --- ,

we see that HI(X,G)/HI(X,Z) is the group of the isomorphism classes of

the line bundles of first Chern class zero. This is by definition the Picard

variety Pico(X) of X. Note that it is also the intermediate Jacobian JI(X):

(15) JYX) =~ Pic%X).
On the other hand, since

H2d-1cx) - gd.d-1gpd-1.d ,
the intermediate Jacobian

10 = w-tdsm,

= HOX,Q1)*/H,(X,Z) .

This last group is by definition the Albanese variety Alb(X) of X. Hence
(16) 19x) = AE) .

EXAMPLE 17. (a) For a smooth curve C the intermediate Jacobian ]1
is the Jacobian of the_ curve, rational equivalence is linear equivalence,

and the Abel-Jacobi map for Jl is the usual Abel-Jacobi map

u:Div%(C) - J(©).

e
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Note that in this case,
31 = J(C) = Pic%C) = AIb(C) .

(b) Let F be a smooth surface.

For HI(F) the intermediate Jacobian is the Picard variety:

JYF) = Pic%F).

For H2(F) the Lefschetz theorem on (1,1)-classes completely settles
the nature of the Hodge classes.

For H3(F) the intermediate Jacobian is the Albanese variety:

JXF) = Alb(F) .

(c) Let V be a threefold. For HY(V) and H3(V) the intermediate
Jacobians JI(V) and J3(V) are again the Picard and the Albanese
varieties respectively, of which we have some degree of understanding.
The group H2(V) is taken care of by the Lefschetz theorem on
(1,1)-classes. Since H%V) is isomorphic to H2(V) by the Hard
Lefschetz theorem, the Hodge conjecture holfis for H%’z . Indeed, if ¢&
is an integral (2,2)-class, then ¢ = w-{ for some rational (1,1)-class ¢£.
By the Lefschetz theorem on (1,1)-classes, ¢ is a multiple of the funda-
mental class of a divisor S in V. But then an integral multiple of ¢ is
the fundamental class of a hyperplane section of S.

Thus the first mysterious group is H3(V) of a threefold V. If

h3:9%Vv) = 0, then
HS(V) = H2,1 $H1,2

behaves very much like a Hodge structure of weight one. But if
h3:9%(V) £ 0, then the associated intermediate Jacobian JX(V) so far

eludes understanding. We mention here one interesting special case.

SPECIAL CASE. Let V CP%4 be a smooth quintic threefold. (Threefolds

of lower degree all have hW3%-9 .) Using Schubert calculus, for example,
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one can show that V has 2875 lines, some counted with multiplicity.
Because H2(V) = Z, the difference of any two lines is homologous to

Zero:

2
Lij = Ll——Lj ¢eH (V) .

It is known that if V is a general quintic threefold, then “(Lij) £0,

where u is the Abel-Jacobi map.

OPEN QUESTIONS. Are the only relations given by “(Lij) + “(Lji) =07
Can the configuration {“(Lij)} C JXV) be determined using infinitesimal
variation of Hodge structure (cf. Chapters III, XII below)?

We remark that, by considering higher degree rational curves on V,
Herb Clemens has drawn a very surprising conclusion (cf. Chapter XVI

below).

Another question is to explicitly compute out the Abel-Jacobi mapping

4
in one nontrivial example with h3% £0; e.g., the threefold = x‘ii =0
i=0
(d25) in P*.
(d) For a fourfold X, apart from Hl, H?, H®, and H7, which we

can take care of as before, virtually nothing is known about the rest.
PROBLEM. Try to understand the algebraic subvarieties of

X =F, xF, (a product of two surfaces)
and

X = C%/lattice (an Abelian variety) .

§2. Classifying spaces

Let HZ be a fixed lattice, n an integer, Q a bilinear form on HZ,
which is symmetric if n is even and skew-symmetric if n is odd, and
{hP:9} a collection of integers such that p+q =n and 3hP'9 = rank HZ.

As before, denote by H the complexification HZ@C.

\
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DEFINITION 18. With the notations above, the classifying space D for
the polarized Hodge structures of type {HZ, Q,hP:4} is the set of all
collections of subspaces {HP'4} of H such that

H= @ HPY, dim HP-9 = hP-9 |

p+q=n
and on which Q satisfies the two bilinear relations (8) and (9).

Set fP = h™C+... 4 PP [In terms of filtrations, D is the set of
all filtrations

H=F°>Fr1>...5F", dimFP=fP,

on which Q satisfies the bilineat relations (10) and (11).
A priori D is only a set, but in fact it can be given the structure of a
complex manifold. The simplest way to do this is to represent D as an

open subset of a homogeneous algebraic variety.

DEFINITION 19. The compact dual D of D is the subspace of
ngoG(fp,H) consisting of the filtrations {FP} on H satisfying the first
bilinear relation (10). Here G(fP,H) denotes the Grassmannian of

fP.dimensional subspaces of H.

Because the first bilinear relation (10) is a set of algebraic equations,
the compact dual is clearly an algebraic variety. We will show below that
it is in fact a complex manifold.

In connection with a polarized Hodge structute there are three basic
Lie groups:

Gy = Aut(HZ,Q) .
={g:H; > H,|Q(e¢,88) = Q($,¢) forall ¢, & in Hyl,

GR = Aut(HRIQ) 1

G = Aut(H,Q) -
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EXERCISE 20. Show that GC acts transit.ively on the compact dual D
and that GR acts transitively on the classifying space D.

Because the group GC acts transitively on D, the variety D is
smooth. Let B be the stabilizer of a point in D. Then

D = GC/B'

Since D is an open subset of D , it is also a complex manifold. By

Exercise 20,
D =« GR/V s

where V = GR N B is the stabilizer of a point in D.

We will find it useful to have the infinitesimal versions of these basic
Lie groups. So let {Hg’q§ in D be chosen as the base point, which we
regard as the reference Hodge structure. The Lie algebra gR of GR has

the following description:

a = 1Y cHom(H  HO) (YY) + QU Y7) = 0

for all ¢, n in HR;'

Analogous descriptions hold for the Lie algebras gz and 8c of GZ

and GC. Here 87 =8¢ n Hom(HZ,HZ); note that
6c = gQ e C.

We can give the space Hom(H,H) a Hodge structure of weight zero by
setting

HOm(H,H)r'_r = @ Hom(leq’Hp'H.Jq—r)

p+g=n
and

Hom(H,H)** = Hom(H,H)™"F .

Since gC is a rationally defined subspace of Hom(H,H), it inherits a

VARIATION OF HODGE STRUCTURE 17

Hodge structure of weight zero from Hom(H,H) :

I,—r _

t,—t _ =,f
8¢ =6g M Hom(H,H) =g¢c’ -

If b is the Lie algebra of the complex stability group B, then

B = @ gl‘,—l' ,
>0 c

for these are precisely the infinitesimal automorphisms that leave the
reference Hodge filtration fixed. If B is the Lie algebra of the real
stability group H, then

I):BﬂgR.

Over the compact dual D we have the universal subbundles FP - D.

These are holomorphic vector bundles. Their quotient bundles

Hp.a - FpFptl

are also holomorphic vector bundles. We call the restriction of these Xpa
to the classifying space D, the Hodge bundles. The Hodge bundle Hpa
is a vector bundle over D whose fiber at the point {FP} is FP/FPH! -
HP'9, Note that FP has the C* decomposition

P _ {0 0... o (PP

Because of the second bilinear relation, each Hodge bundle HP9 has
a GR-invariant metric, (v-1)P79Q( , ), making it into a Hermitian vector
bundle. As is well known, any Hermitian vector bundle has a canonical
connection and therefore a curvature. We shall comment on the curvature
of the Hodge bundles in the second lecture.

We now turn to the tangent bundle of D. First recall that over the

Grassmannian G(k,H) there is a canonical isomorphism

T(G(k,H)) = Hom(S,Q),

.



18 PHILLIP GRIFFITHS

where S and Q are the universal subbundle and quotient bundle respec-
tively. One way of giving this isomorphism is by the following recipe.
Suppose F(t) is an arc in G(k,H) with initial point F ¢ G(k,H) and
initial vector & ¢ TF(G(k,H)). Forany v in F, let v(t) be a curve in
F(t) with v(0) =v. Then the homomorphism &:F - H/F corresponding

to the tangent vector & is-given by

[=9

Ew) = vl (mod F) .

jaX

t

Denoting by K the trivial bundle with fiber H over D , we therefore
have

T(D) C @ Hom(FP,H/FP)

p=1

n
= @ Hom(™%e...0}(P:0-P JP-LA-pHle.. o OM)
p=1

Similarly, the tangent bundle T(D) is also contained in this direct sum
of homomorphisms of Hodge bundles. Because each Hodge bundle has a
GR-invariant Hermitian metric, the classifying space D also has a

GR—invariant Hermitian metric, which we denote by ds% .

REMARK 21. In fact, this GR-invariant metric on the classifying space
D is induced by the Killing form on the Lie algebra 6R"

Examples of classifying spaces
EXAMPLE 22 (Weight One). For n=1,

H=u!%en0!, Hl.0 g1

and Q is a skew-symmetric bilinear form. Let g =dim H1'%. Then each
filtration H'®C H is an element of the Grassmannian G(g,H). Relative

to a suitable basis for H, the skew form Q is represented by the matrix

s

B om e S

ST O ey

I
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[OI
-1 0]°

So D is the set of all g-dimensional isotropic subspaces of [_(; (I)]

on C2?8. (An isotropic subspace of a skew form ] is a subspace V
such that J(V,V) =0.) These are precisely the maximal isotropic
subspaces.

The classifying space D may be identified with the Siegel upper

half space

H, = {g by g complex matrices Z =X +iY|Z is

symmetric and Y is positive definite},

as follows. Each element of G(g,H) is represented by a 2g by g

matrix (1, up to the equivalence relation
Q ~BQA, BeSp(2g,Z), A ¢GL(g,0).

The matrix  can be brought to the normal form

-

where Z isa g by g complex matrix. By the first bilinear relation Z

is symmetric. By the second bilinear relation Im Z is positive definite.

§3. Variation of Hodge structure
Let 7:% - S be a family of smooth polarized projective varieties. By

this we mean that there is a commutative diagram

X C SxPN

S

and that the fibers of #:X - S are smooth projective varieties. By
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associating to each fiber X the Hodge decomposition of its primitive
cohomology, we get locally maps from open subsets of § into the classi-
fying space D. Because one can identify the integer cohomology
Hn(XS,Z)/torsion of a fiber with a fixed lattice HZ only up to the action
of the monodromy group I', it is in general not possible to get a map from
S into D. Instead, what one has is a map into the quotient of D by the

action of the monodromy group

$:S - '\D,

called the period map. It is shown in [4] that the period map is holomorphic.

A priori the differential of the period map

n p
b,:T(S)»TMD) C P o) (Hom(}P-9, }(p—r,q+r))

p=1 r=1
goes into the full tangent space of D at each point. However, by [4] we

do know that in fact ¢, shifts the Hodge filtration by only one; that is,
¢, maps into the subbundle 31 Hom(KP-9, Hp—l,q+1) .
p:

To formalize the essential properties of the period map, we digress

for a minute to discuss differential systems.

DEFINITION 23. A differential system on a complex manifold X is
given in one of two equivalent ways:

(i) either by a holomorphic subbundle T, (X) of the holomorphic
tangent bundle T(X), or

(ii) by an ideal I in the complex Q*(X) of holomosphic forms on X

generated by a collection of 1-forms and their exterior derivatives,

An ideal such as in (ii) is called a differential ideal.

Given (i) we define I to be the differential ideal generated by

]

1/ 3 Th(X)l annihilator of Tp(X)

{ e QX)(v) = 0 for all veT(X)}

s e

kG iy it

Poeo—
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and

ay ¢ Q%(X) .

Conversely, given a differential ideal 1 we define the holomorphic sub-
bundle Ty (X) to be the kernel of all the 1-forms in I. (This requires a

constant rank assumption.)

DEFINITION 24. An integral manifold of a differential ideal I on X is
a holomorphic map of complex manifolds, ¢:S » X, such that ¢>*I =0.

This is equivalent to saying that
A.T(S) C Tp(X) .
In checking integrality it suffices to check it on 1-forms, since if ¢ is

a 1-formand ¢*f =0, then ¢*dyy =dop™py =0.

DEFINITION 25. The horizontal differential systemon D is
T,(D) = {€eTD)|EFP) CFPLY,

Because integrality is a local condition and because the period map
¢ is locally liftable to D, we may restate the horizontality of the period
map in the following form: the period map of a family of polarized alge-
braic varieties is an integral manifold of the horizontal differential system

on D.

DEFINITION 26. An integral element of a differential ideal I on a com-
plex manifold X isa subspace E C T,(X) for some x in X such that

(¥ Yl =0

1

and

(k) dyp lp =0

for all generators ¢y of degree 1 in I.

a
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Note that (%) are linear equations and (**) are quadratic equations on
a Grassmannian. In the theory of differential equations a system is said
to be involutive if, roughly speaking, one cannot obtain new equations by
differentiating the system. In other words, given (1) a system of differen-
equations, one looks at (2) the set of all solutions, and then at (3) the
system of all differential equations annihilating the sélutions in (2). If

(3) = (1), the system is said to be involutive.

OPEN QUESTION 27. Let ¢:S »I"\D be the period map of a family of
polarized algebraic varieties and let 1 be the differential ideal deter-
mined by

¢, :T(S) » TA'\D) .

Are the differential equations of I an involutive system?

DEFINITION 28. A variation of Hodge structure is a map ¢:S - I"'\D,
where S is a complex manifold and I' is a subgroup of GZ, such that
¢ is

(i) locally liftable,

(ii) holomorphic,

(iii) an integral manifold of the horizontal differential system I .

REMARK 29. Let § be the universal covering of S. Then Condition (i)

is equivalent to the existence of a map q-S :§ > D which makes the follow-

L]

s—-—»TI'\D.

ing diagram commutative:

In terms of filtrations a variation of Hodge structure may be thought of

as a family of variable Hodge filtrations, varying with s,

P _ yn,0g4. .. p,n—p
Fs ‘Hs e. GBHs

i o8

-
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on a fixed vector space H such that

(i) for each s the filtration is defined up to the action of an ele-
ment of I"C GZ,

Gi) aFL/o8 CFL,

(ii) oF2/ds C Fg"l .

Let mg be the moduli space of sn;ooth curves of genus g and
Fg =Sp(g,Z) the symplectic group. In Example 22, we noted that the
classifying space for the polarized Hodge structures of weight 1 can be
identified with the Siegel upper half space }{g' Hence, by associating to
each curve its Hodge filtration HY'°C H!, we obtain a map

¢)1mg - Fg\}‘(g .

However, because Wg is not smooth and ¢ is not locally liftable
around curves with automorphisms, it is not a variation of Hodge structure
as we have defined the term. To take care of this situation, we introduce

the notion of an extended variation of Hodge structure.

DEFINITION 30. Let S be any variety, possibly singular. A map
¢:S >T'\D is called an extended variation of Hodge structure if there
is a smooth dense Zariski open set $"CS such that qSlS,:S'—» I'\D is

a variation of Hodge structure.

By the local liftability property, given a variation of Hodge structure,

we have the monodromy representation
p:my(S) - I

For an extended variation of Hodge structure, there is the monodromy
representation ,

p:m(8) - T,
which, of course, depends on the open subset S°. Bat it turns out that
the group p(n(S7)) CT" is independent of S'CS. This is called the

monodromy group of the extended variation of Hodge structure.
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Speaking in general terms the global Torelli fuoblem asks whether the
Hodge decomposition of a variety determines the isomorphism class of
the variety. The idea for proving such a statement would be to try to
associate a geometric object to a Hodge structure, for example, the theta
divisor of a Jacobian in the case of curves. In higher dimensions this
cannot be done. What seems more amenable is the generic global Torelli
theorem, which would say that the period map ¢ from some sort of moduli
space M onto its image ¢(M) CI'\D has degree one; this means ¢ is
generically one-to-one, but there could be points in I'\D whose inverse
images have more than one point. For an exposé€ of the recent progress in
the pathology of the period map, see Chapter VIII of this volume. Generic
global Torelli theorems are discussed in Chapters IX - XIIL

The period map and Hodge bundles

Let ¢:S - I'\D be a variation of Hodge structure with monodromy
representation p:7,(S) » I'. We view the universal covering S of S as
a principal 7;(S)-bundle over S. Then the monodromy representation p

induces a lattice bundle }(Z with group #,(S) over S, defined as the

quotient of § x HZ by the equivalence relation

(Sg.y) ~ (S,gp), where gem(S).

The complexification of HZ is a complex vector bundle over S. Because
H has the same transition functions as }(Z , it is locally constant and

hence holomorphic. In the following, we will identify the holomorphic
vector bundles over S with the locally free sheaves of Os-modules.
Associated to the locally constant sheaf H is a (1,0)-connection V,

relative to which the sections of }(Z are locally constant.

At each point s ¢S, the period map ¢:S > I" D defines a filtration
n 1 [0}
fojcFrc.. cFlcF) = K,

giving rise to a sequence of holomorphic subbundles FP of . The

< s g

s

-

-
O R e e ]

- T

e
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Hodge bundle HP-9 is defined to be the quotient bundle
Hpa - Fp/FpH1 |

There is a C™ (not holomorphic) decomposition

He @ HP9,  HPa _HOP,

ptg=n

In this context, the infinitesimal period relation becomes
VFP Cc FP-1 el .

In summary, a variation of Hodge structure ¢:S - I"\D gives the data
{}(Z’ ¥P,A, S}, where }{Z is a sheaf of lattices, JP a filtration on

H= HZ® OS , and V:H - HeQ! the connection whose locally constant
sections are }(Z®C and which satisfies the infinitesimal period relation.
Conversely, a set of data such as this determines a period map ¢:S-I'\D.
So a variation of Hlodge structure can be given in either of these two

equivalent ways.

EXAMPLE 31. Let #:X » S be a family of polarized algebraic varieties

of dimension d all of whose fibers are smooth. Set

}(Z = Rnn*Z R
P
J; = FPH] (X,,0) .

Define V to be differentiation under the integral sign; this means,

(%fw(s):fvim(s),
¥ y o8

where y ¢ H (Xg,Z) is a family of cycles. Then {{,¥P,v,s} is a varia-

tion of Hodge structure.
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Normal functions
Given a variation of Hodge structure {]‘(Z, HP:9,V, s}, the connection

induces by the infinitesimal period relations a map

) D:H/FP . H/FPYHeq!.

A section v of H/FP with Dv =0 is said to be quasi-horizontal. The
quasi-horizontal sections of course include the horizontal ones (those for
which Vv =0).

In case the variation of Hodge structure has odd weight n =2m -1 ,

we can define a family of intermediate Jacobians by setting
§ = H\H/Fm s
Because VHZ =0, (%) induces amapon §:
D:J - J/F™hHe! .
The kernel of D,
ﬂh = {vedDv =0},

is called the sheaf of normal functions. The sections of f]h are the

normal functions. These are discussed in Chapters XIV - XVIL.

EXAMPLE 32. Let X +S be a family of algebraic varieties and 8 C %

a codimension m cycle such that each intersection

m
B-Xg = Zg eZ(X)
is homologous to zero. Define

Us) = uy (Zg) €J(XQ)

where uxS :Z}T(Xs) » J(Xg) is the Abel-Jacobi map on Xs. It is known
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that v:S » g is holomorphic and assumes values in ﬂh (see [5]). It is

called the normal function associated to 3 .

DEFINITION 33. A polarized Hodge structure {HZ,Hp’q,Q} is said to
be unimodular if det Q = 1.

REMARK. The intermediate Jacobian of a unimodular polarized Hodge

structure of odd weight is a principally polarized complex torus.

PROBLEM 34 (Beauville). Let ¢ be a unimodular polarized Hodge
structure. Suppose ¢ can be written as a direct sum of unimodular

polarized Hodge structures:

fl

p=0g¢,.

Is this decomposition unique?

REMARK. The answer is no if the Hodge structures ate not assumed

unimodular.
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Chapter II
CURVATURE PROPERTIES OF THE HODGE BUNDLES
Phillip Griffiths
Written by Loring Tu

We consider a polarized variation of Hodge structure ¢:S - I'\D,
which we think of ldcally as a variable polarized Hodge decomposition on

a fixed vector space:

H - @ nit
p+q=n

P 1,0, oyuP 0P

FS = HS ® el'ls ’

where s varies over the variety S. (To be strictly correct, s should be
in the universal covering §, for otherwise it may not be possible to have

the fixed vector space H. Locally the description just given is fine.) We

have
oHed -
s ¢ HP+1,q e uP4
a§ = '8 )
and by conjugation,
omp -
s cgPtleyP L,q+1 .
as S S

or in terms of filtrations,

|,
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