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Introduction 

The  m o t i v a t i o n  for this series of papers  is an  a t t empt ,  once  again ,  to arr ive  at  some  
u n d e r s t a n d i n g  of h igher  c o d i m e n s i o n a l  subvar ie t i es  ly ing  o n  an  a lgebra ic  variety.  

F o r  divisors ,  o n e  first k n o w s  which  h o m o l o g y  classes are a l g e b r a i c - t h i s  is 
the  Lefschetz (1,1) theorem.  Next ,  as p roved  by P ica rd  a n d  Lefschetz,  h o m o l o g i c a l  
a n d  a lgebra ic  equ iva l en t  coincide .  F ina l ly ,  the d iv isors  a lgebra ica l ly  equ iva l en t  to 
zero m o d u l o  those r a t i ona l l y  e q u i v a l e n t  to zero cons t i t u t e  an  abe l i an  variety,  the  
P ica rd  variety,  whose  s t ruc tu re  is r e a s o n a b l y  well unde r s tood .  F o r  an  a lgebra ic  
curve  this la t te r  is the  J a c o b i a n  var ie ty  which  p lays  a decisive role  in  the s tudy  of  
the  curve.  
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In higher codimension the question of which homology classes are algebraic 
is the Hodge con jec tu re - i t  is false for torsion classes and there are precious few 
examples over II). Next, homological and algebraic equivalence may not coin- 
c i d e - o u r  most optimistic guess is that the quotient forms a finitely generated 
Mordell-Weil type subgroup of an intermediate Jacobian. Finally, the quotient 
of cycles algebraically equivalent to zero modulo those rationally equivalent to 
zero may not even be finite-dimensional. This is due to Mumford, and will be the 
case for an algebraic surface S for which the geometric genus pg(S) 4=0. Roitman has 
refined Mumford's result to the statement that a "general" zero-cycle will be 
isolated in its rational equivalence class, so that the above quotient will be "as 
infinite-dimensional as possible." 1 

Confronted with this state of affairs it seemed a good idea to go back and have 
a look into just how our understanding of the beautiful codimension one theory 
came about. Here, almost certainly the decisive step was Abel's theorem. This 
claim is by no means intended to minimize the later works of Jacobi, Riemann, 
etc., but rather to maintain that it was Abel's theorem which initially got the ball 
rolling. His general addition theorem provided the key to unlocking the structure 
of an algebraic curve via its Jacobian. Moreover, once Jacobians were understood 
they provided the tool for the first proofs by Picard, Poincar6, and Lefschetz of 
the general theorems about divisors mentioned above. Indeed, these proofs were 
based on properties of Jacobians of a pencil of curves varying on a fixed surface. So 
one is confronted with the decisive role which Abel's theorem played historically 
in arriving at our present understanding of divisors. 

Upon looking into the original papers by Abel and some of the works following 
i t -especia l ly  J a c o b i -  there were several surprises. To begin with, Abel's original 
statement was somewhat more general than that usually presented in textbooks, 
although a converse to the more narrow statement is now usually provided. 

More importantly, some of the originalflavor seems to have been lost. We now 
think of Abel's theorem together with Jacobi inversion as stating that on an 
algebraic curve of genus g the effective divisors of degree g admit a rational group 
law, generalizing the group structure underlying the addition theorem for the 
classical elliptic integral. This is certainly a beautiful statement. However, as 
shown by Mumford's theorem, this version of Abel's theorem does not extend to 
higher codimension. 

Now it seems to me quite possible that Abel viewed his theorem in a broader 
context. The formal statement of the result is of a quite general character and may 
be extended to higher-dimensional varieties using either the trace or residues, both 

I On a somewhat more positive note, very nice recent work by Spencer Bloch has managed to 
bring some order into the structure of zero-cycles modulo rational equivalence on an abelian variety A. 
Even though this group C(A) is infinite-dimensional, he has found on it a filtration whose successive 
quotients have geometric meaning. For example, on an abelian surface Bloch found the pair of exact 
sequences 

O ~ K - - .  C(A) des, Z - * O ,  

O-~ I---, K * ~ A --, O 

where "deg"  is the degree m a p , ,  is the sum in the group structure on A, and I are the zero cycles 
generated by complete intersections D.  D' of divisors D, D'6 Pic~ Some of the discussion below 
further suggests the special role of complete intersections (c.f. (2.26)) 
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of which will be discussed in this paper. More importantly, the informal under- 
standing seems to have been that the presence of global functional relations or 
addition theorems (loosely interpreted) was a widespread phenomenon in algebraic 
geometry, and one should usually expect at least some among them to yield precise 
insight. It is this philosophy which provides our frame of reference. 

A third surprise was the very pretty fashion in which the power of Abel's 
theorem was illustrated by applications to elementary questions in geometry. 
Among the first of these was Jacobi's treatment using elliptic functions of the 
classical Poncelet problem concerning closed polygons inscribed in one conic and 
circumscribed about another. While some of these geometric applications remain, 
many have been forgo t ten-perhaps  because of our preoccupation with the 
intrinsic birationally invariant properties of a variety as opposed to the extrinsic 
or projectively invariant properties. More seriously, even though we have general- 
ized the definitions and formalism of the structure of divisors to higher codimen- 
sion, these fail to yield answers to simple Poncelet type puzzles such as was 
possible classically by Abel's theorem. 

Consequently, in this series of papers we have set about to rethink the Abel- 
type philosophy concerning global functional relations with emphasis on finding 
special cases where the necessary conditions in a geometric problem imposed by 
an "additional theorem" can be proved to be sufficient. It is much too soon to 
draw general conclusions, but we have been able to find a number of situations 
where inversion is possible. The higher codimensional questions characteristically 
appear to be nonlinear, thus explaining the absence, in general, of a group struc- 
t u r e -  although this latter will certainly be present in important special cases. 

We have two purposes in this particular paper. One is to present an historical 
exposition of Abel's proof of his theorem together with a few of the early applica- 
tions in the spirit - but not necessarily the precise form - in which they were initially 
given. There are several reasons for undertaking such an exposition. One is to 
establish the tone and frame of reference for what will be discussed later. Another 
is that unlike many turning points in the fairly recent history of mathematics, it 
seems to me that some of the original meaning of Abel's theorem has been l o s t -  
in any case it has certainly been n a r r o w e d - a n d  on this the 150th anniversary of 
his original paper 2 it is hopefully worthwhile to revive his work in the general 
context of attempting to shed some light on higher codimension questions. 

There are also some new results in this paper. One is concerned with inverting 
the conditions for rational equivalence of zero cycles on a surface which Mumford 
used, and another is a converse to a global residue theorem. These are presented 
in Sections II d and III a with some applications appearing from time to time. There 
is a principal new theorem, stated in Section l ie  and proved in Section IIIc, and 
which we now explain. 

Let V, c IP "+' be an algebraic variety of pure dimension n in a projective space 
of dimension n + r. We assume that V has no multiple components, but otherwise 
the singularities are arbitrary. We also assume given a rational n-form ~k on V. 
Denoting by ~;(r, n + r) the Grassmann variety of projective r-planes in IP "+r, a 

2 Memoire sur une propri6te gen&hle d'une classe tr6s 6tendue de fonctions transcendentes, Oeuvres 
de N. H. Abel, Vol. I, pp. 145-211; c.f. also, D6monstration d'une propri6t6 gen6r~le d'une certain6 
classe de fonctions transcendentes, loc. cir., pp. 515-517 
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general plane A e ~ (r, n + r) meets V in d = degree V distinct simple points P~(A). 
We use the notation of cycles to write the intersection 

A ..V=P~(A)+...+Pa(A), 

and define the trace Tr (~k) to be the n-form given by the formula 

(0.1) Tr (0)=r 

where ~k(P~(A)) is the pullback of ~b under the map A-+P~(A). The formula (0.1) 
defines the trace on a dense open set in the Grassmannian, and the discussion in 
Section II will show among other things that Tr (~b) is a rational n-form on 
113(r, n + r). We say that ~O is of the first kind for the imbedding V c l P  "+" i fTr  (~O) is 
holomorphic. In case V is nonsingular this is equivalent to ~ being holomorphic 
on the complex manifold V. However, if, e.g., V, c I P  "+I is a hypersurface given in 
affine coordinates by an equation f ( x l  . . . . .  x , + 0 = 0 ,  then ~k may be written in 
the form 

r(x) dxl A "" A dx, 

U/OXn+ 1( X ) 

for a rational function r(x), and ~ is of the first kind for this embedding if, and 
only if, r(x) is a polynomial of degree at most d - n - 2 .  

In case r is of the first kind the trace Tr (~0)-0 since there are no holomorphic 
forms on the Grassmannian. When written out, this relation becomes 

(0.2) r +r 

which may be viewed as a functional relation or addition theorem globally linking 
together the local behavior of V around the points of intersection with a variable 
r-plane. 

Our main theorem is a converse to (0.2). Namely, suppose we are given little 
pieces or germs V 1 . . . . .  V d of irreducible n-dimensional complex analytic varieties 
in IP "§ together with meromorphic n-forms q J ~ 0  on V~. Assume that there is 
an r-plane A0 meeting each V~ once in a simple point which is not a pole of ~,~. 

V2•" ~-.p2 (A) 

A o A 
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Then for A in a neighborhood U of A o the trace 

~h,(P~(A))+...+~hd(P~(A)) (P~(A)=A. V~) 

makes sense, and we have the 

Main Theorem. Assume that the addition theorem 

(0.3) qq(P~(A))+...+~Od(Pa(A))-0 

is satisfied. Then there is an algebraic variety V. ~]P "+" and rational n-form r of the 
first kind relative to this embedding and such that each Vv c V and ~kl V~ = ~ .  

This then is a type of converse to the Abel relation (0.2). Intuitively, the func- 
tional equation (0.3) will allow us to propagate the pieces of variety V~ in much the 
same way that Abel's original addition theorem initially led to the construction 
of elliptic functions as will be discussed in Section Ib (c.f. the argument centered 
around Eqs. (2.18) and (2.19)). 

A result of the above type for algebraic curves goes back about 100 years. 
Sophus Lie wanted to characterize Jacobians as being those principally polarized 
abelian varieties whose theta divisor was doubly of translation type. In trying to 
prove this he was led to the above theorem (in integrated form) in the case of plane 
quartic curves. His discussion of this result is lengthy and the proof appears to be 
rather complicated. Our first proof of the general theorem was also quite messy, 
and the argument we shall give below was suggested by Darboux'  proof of the 
Sophus Lie theorem (c.f.G. Darboux, Lecons sur la th6orie generale des surfaces, 
2d ed., Paris (1914), Vol. I, pp. 151-161). Our main innovations are to consider the 
problem for n-dimensional varieties, and to observe that since what is being 
constructed is a variety V together with a rational form ~b on Vthe notion of residue 
is central to the problem. Indeed, if V~ IP "+~ is a hypersurface, then the data 
(V, ~) is equivalent to a rational (n+ 1)-form h u on IP "+1 whose Poincard residue 
is ~ (c.f. Section IIIc). The construction of 7 ~ from the local data (V~, Or) proceeds 
in a natural manner, and ultimately uses the Levi-Hartogs theorem. The same 
result for curves in IP" was discussed by Wirtinger, and the Darboux proof was 
used by Blaschke-Bol in their study of webs (c.f.W. Blaschke and G. Bol, Geometrie 
der Gewebe, Springer, Berlin (1938), pp. 209-224. References to Lie and Wirtinger 
appear on p. 240). 

On a personal note I would like to say that it was B. Saint-Donat who told 
me of the Sophus Lie theorem. He has thought through the Sophus Lie problem 
in an algebraic setting (characteristic p) and has arrived at a proof in this situation. 
In fact, his p r o o f - w h i c h  is of more formal and less computational character 
than the one we shall give h e r e -  deals with the situation where the residual family 
need not be linear spaces, and suggests some very interesting questions. Our main 
theorem may be phrased in a purely algebraic context and should also be true in 
characteristic p. 3 

We conclude the introduction by giving some further references and comments 
on style. In Part I an attempt has been made to present Abel's theorem and the 
subsequent inversion theorem in an historical context, viewing the questions as 
they appeared at the time and treated using only calculus. Our proof of Abel's 
theorem is essentially the original, as is the discussion of the inversion of the elliptic 

3 See Notes Added in Proof 
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integral including the degenerate cases. These arguments are direct and elementary, 
and are in my opinion at least as penetrating and elegant as modern proofs. The 
general addition theorems in Section I c are a synthesis of G~Spel, R~Ssenhaim, 
Jacobi, and Cayley. An interesting account of the early difficulties encountered 
in the simultaneous inversion of several abelian integrals is given by Weierstrass 
in the "Anmerkungen" to Volume II of the Gesammelte Werke of Jacobi (c.f. 
pp. 516-521). The result evolved laboriously over a period of 25 years or so, and 
our proof is somewhat different and uses a counting constants argument to reduce 
to a situation formally analogous to the cubic case. It is worthwhile to keep in 
mind that the early discussions of inversion were given up after Riemann's thesis 
in justifiable favor of his explicit inversion using the theta func t ion-  which opens 
the door to the lovely and subtle theory of special divisors. Our treatment is not 
meant to be comple te- in  fact, just the opposite, it may be used to provide histori- 
cal background to the recent beautiful notes, Curves and their Jacobians, Univer- 
sity of Michigan Press, Ann Arbor (1975), by David Mumford. As mentioned 
previously, the discussion of Poncelet is gleaned from Jacobi; we have used geo- 
metric arguments in lieu of his calculations involving elliptic functions. Recently, 
Joe Harris and this author found an even more symmetric form of the Poncelet 
problem for quadric surfaces in 3-space, which will be given in a future paper. 

In Part II we have taken up the trace and its relation to Abel's theorem in 
higher dimensions. The properties of the trace are proved from local analytical 
considerations and the global G.A.G.A. principle, both of which we have treated 
as being based on Remmert's proper mapping theorem-c . f .R .  Remmert, Holo- 
morphe und meromorphe Abbildungen komplexer R~iume, Math. Annalen, 
Vol. 133 (1957), pp. 328-370. The use of the trace to study points on a surface has 
been around for some time. The earliest reference I can find is to Max Noether, 
Zur Theorie des eindeutigen Entsprechens algebraischer Gebilde, Math. Annalen, 
Vol. 2 (1870), page 304 and Vol. 8 (1875), page 495, whose methods were taken up 
by Severi and then used by Mumford to draw conclusions opposite those desired 
by Severi (c.f. David Mumford, Rational equivalence of zero cycles on surfaces, 
Jour. Math. Kyoto Univ., Vol. 9 (1969), pp. 195-209). It is interesting to note that 
an Abel-type relation underlies this work as well as that of Bloch mentioned in 
footnote 0 above. Other references to zero cycles are Arthur Mattuck, Ruled 
surfaces and the Albanese mapping, Bull. A.M.S., Vol. 75 (1969), pp. 776-779 and 
A. A. Roitman, Rational equivalence of 0-cycles, Math. U.S.S.R.-Sbornik, Vol. 18 
(1975), pp. 571-588. Aside from Mumford's theorem discussed in IId, the other 
applications of the trace and inversion of Abel-type conditions appear to be new. 

Finally, in Part III we have taken up the connection between Abel's theorem 
and residues relative to the ambient space in which our variety is embedded. This 
was known for curves in IP 2 pretty much from the beginning, and may be found in 
Jacobi (for a precise reference see footnote 12 in Section III a). A recent account 
appears in the book by Benjamino Segre, Some Properties of Differentiable Varie- 
ties and Transformations, Ergebnisse der Math., Vol. 13 (1957), Springer-Verlag. 
Our converse to the residue theorem and use of it for surfaces other than IP 2 
seems to be new, and will be taken up at greater length in the second paper in this 
series. It is the converse to the residue theorem which philosophically-but  not 
as yet in a precise mathematical sense-underlies our working hypotheses con- 
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cerning the inversion of Abel-type conditions which we mentioned previously. 
The references surrounding the Sophus Lie theorem were given above. 

I. Abel's Theorem in Original Form and Applications 

(a) Origins of the Theorem and Abel's Proof 

We shall discuss some of the questions which led up to Abel's theorem, and then 
give what amounts to his proof of the result. An attempt will be made to do this 
from the viewpoint of the 18th and early 19th centuries. 

In the applications of calculus to geometry and mechanics integrals of the kind 

(1.1) fr(x,y(x))dx 

were frequently encountered. Here r(x,y)=p(x,y)/q(x,y) is a rational function 
of x and y, and y(x) is an algebraic function of x - b y  which we mean that there is a 
polynomial f(x, y) whose roots y~(x) ..... y,(x) are multi-valued functions of x 
and y = yv(x) is one of these selected in a continuous fashion. 

For example, on the circle f(x, y)= xE+ y2_  1 = 0 the arclength is given by the 
integral 

dx 
(1.2) S ] / d x E + d y E = I ~ ,  

since x dx + y dy = 0 and 

] /dxZ+dyE=( l / / l+(~)E)dx  

dx 
Y 

on this circle. Similarly, if we represent the ellipse xZ/aE+ yE/b2= 1 parametrically 
by x = a sin 0 and y = b sin 0, then the arclength integral is 

] /a  2 cos 2 0 "~ b 2 sin 2 0 dO = S a(1 - k 2 sin 2 O) dO 
1/1 - k E sin E 0 

where kE= (a E -  b Z)/a 2 and we assume a > b. Setting x--s in  0 this integral becomes 

(l--kZxZ)dx 
(1.3) a~ (kE* 1). 

t/(1 - xE) (1 - k E x  2) 

The integrals (1.2) and (1.3) are trigonometric and elliptic integrals, respectively. 
It was, of course, well known that (1.2) defines the elementary function arcsin x 
having familiar properties, especially the addition theorem, but the understanding 
of elliptic and higher integrals provided a major problem during the 19th century. 

In order that we may explain what Abel proved about these integrals (1.1), it 
is convenient to first establish some conventions and terminology. To begin with, 
we assume that x and y are complex numbers. At the time of Abel the utilization 
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of complex numbers in geometry was quite recent (Poncelet, c. 1810) and he was 
one of the first to use them systematically. The polynomial f(x, y) may be reducible 
but will be assumed to have no repeated factors. Thus the algebraic curve C defined 
by f(x, y) = 0  may have several components, none of which are multiple, and arbi- 
trary singularities otherwise. The points at infinity on the curve are the asymptotic 
directions, or equivalently, the limiting positions of the ratios y,(x)/x as Ixl ~ ~ .  
These are just the intersections of C with the line at infinity in the complex pro- 
jective plane IP 2. The path of integration is given by choosing a piecewise smooth 
arc x(t) in the complex x-plane and then continuously selecting one of the roots 

S 

line a t ~  

y,(x(t)) of the equation f(x(t), y)= 0. Due account is taken of the fact that (1.1) may 
be an improper integral as the upper limit of integration approaches certain 
singular points. By Cauchy's theorem the integral remains invariant under contin- 
uous deformation of the path of integration, so long as we do not cross any of 
these singular points. 

Of course, this may all be explained somewhat more satisfactorily using the 
abstract Riemann surface C associated to C and interpreting the integrand as a 
meromorphic differential on C, but we want to put ourselves in the shoes of the 
mathematicians of that period, at least for a little while. 

Integrals of the form (1.1) are called abelian integrals and the integrand 
o~ = r(x, y(x)) dx will be called an abelian differential. We may view co as a rational 
1-form on the algebraic curve C. The simplest case is when r = r (x) is just a rational 
function of x. Then r(x) may be expanded in partial fractions, and the result 
directly integrated to yield 

(1.4) ~ r(x) dx = R ( x ) + ~  a v log(x-xv)  
v 

where R(x) is again a rational function of x. Consequently, such abelian integrals 
are not mysterious. 

For later use we wish to observe that the same is true in several variables: 

If x =(xl . . . . .  x,) and 09= ~. ri(x ) dx~ is a closed differential 1-form with rational 
i = 1  

coefficient functions, then ~ ~ is invariant under continuous deformation of the 
path of integration provided we don't  cross a singularity. It is asserted that again 

(1.5) I o~= R(x) + ~ log S,(x) 
v 
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where R(x) and the Sv(x) are rational functions of x. We prove this when n = 2 and 
under the harmless assumption that the origin is not a singular point. It is then 
possible to choose the path of integration to lie on the line 4 =Xx/X2 =constant.  
Setting xl = t4, x2 = t the integrand 

,o = ~(t,  0 dt 
where ~(t, 4) is rational in t and 4. According to the one-variable result, 

~(t, 4) dt= R(t, 4) + Y', Av l o g ( t -  t~(4)) 
v 

where the tv(r are the points on the above line at which ~(t, 4) has a pole. It is 
important to note that the residues Av are constants independent of 4 since do) = 0. 
In fact, if there is branching such as t~(r = t,(~o) for some 40, then A~ = A,. If we 
therefore collect the points t,(r into groups each of which permutes transitively 
among itself as the line 4 varies, then the A~ are constant for each group and the 
product FI ( t -  tv(4)) for such a group is a rational function of t and r This is 

v 

because the product is evidently a single-valued meromorphic function on •2 
having at most polynomial growth at infinity, and is hence rational. From this we 
now may deduce (1.5) by collecting together the terms in ~ A l o g ( t -  t~(4)) accord- 

v 

ing to the various groups and expressing each as log S(t, r where S(t, r is a rational 
function. 

After the rational integrals (1.4), the next simplest are the hyperelliptic integrals 
r(x, 1/rp (X)) dx corresponding to the curve f(x, y) = y2 _ p (x) = 0, where p (x) is a 

polynomial of degree n having distinct roots. In case n = 1 or 2 the curve C is a 
plane conic, which may be rationally parametriczed by fixing a line L with linear 
coordinate t and point Po on C, and then letting P(t)=(x(t), y(t)) be the residual 
intersection of the line PT/with C. Changing variables gives 

S r(~, pl/~))dx =~ s(t)dt 
to which (1.4) may be applied. 

Thus the first interesting case are the elliptic integrals corresponding to n = 3, 4 
and which we encountered previously. At the time of Abel, there was the addition 
relation for the Legendre integral 

x, dx x2 dx xs dx 
! ]//(1-x2)(1-kZx2) ~- ! ] /(1-xZ)(1-kZx2) - ! ] / (1 -x2 ) (1 -k2x  2) 

where x3(1-kZxZlx2)=xl  l / ( 1 - x ~ )  = ( 1 - k 2 x ~ ) + x 2  l / ( 1 - x ~ ) ( 1 - k Z x ~ ) .  More 
P 

precisely, if we consider the abelian integral u (P)=  ~ dx/y attached to the quartic 
P o  

curve y2= ( 1 -  x z) ( 1 -  k 2 x2), then u(P)+ u(Q)=u(R) where the coordinates of R 
are rationally determined from those of P and Q. What I shall call Abel's theorem 
implies that such addition theorems are the rule rather than the exception. 

To be specific, suppose that 

P 

u(P)= S r(x, y) dx 
Po 
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is a general abelian integral attached to an algebraic curve f(x, y) = 0 and abelian 
differential co = r(x, y) dx. We assume that the curve C has degree n. It is understood 
that u(P) is defined only up to an additive constant or period, about which we shall 
say more later, and is defined for P not one of a finite number of singular points. 
Suppose now that O(x, y)= O(x, y; t) is a polynomial whose coefficients are rational 
functions of some additional variables t = (tl . . . . .  tN). Actually, we could allow the 
coefficients to be algebraic functions of t, but this additional generality can be 
handled the same way. For  a general value of t, the equation O(x, y) =0 defines an 
algebraic curve D, of degree m. We may assume that for some one value t = t the 
curve meets C in mn finite points of which the distinct ones have distinct finite 
x-coordinates. As t varies, we write 

Dt " C = Z P(t) 

and think of the coordinates (4, r/) of P(t) as being algebraic functions of t. Now, 
whereas the individual abelian integral u(P) may be rather mysterious, we have 

Abel's Theorem. The abelian sum 
P ( t )  

(1.6) u(t)=~u(P(t))=~, ~ r(x,y)dx 
P o  

is of the form 

u(t)=R(t)+ ~, log Sv(t) 
u 

where R(t), Sv(t) are rational functions oft. 

We shall give two closely related proofs of which the first is the original one 
due to Abel. It is purely algebraic, and is based on the following two assertions 
both of which are evident from elementary considerations of field extensions: 

(a) If v(x, y) and w(x, y) are rational functions of (x, y), then so is 

~, v(x, yv(x)) w(x, yl(x)) . . :  w(x, y,(x)) 
v 

where the superscript "v"  means that the v-th term is omitted from the product;  
and 

(h) ff @ (x) is a rational function of x whose coefficients are rational functions 
of t, then 

is a rational function of t (recall that ~ runs over the x-coordinates of D,. C). 
We follow Abel's notation and denote by 6 the total differential of a function 

of t. Thus, if ~ (x) is a function of x and ~ has the above meaning, 

According to (1.5) it will suffice to show that 6u(t) is a rational 1-form in dq ..... dt N. 
On the other hand, by differentiation of the integral we have 

(1.7) 6u(t)=~ r(~,tl)(3~, 
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the summation being over the points in D, �9 C. To calculate 6 ~ set 

O ( x )  = O(x, y~(x)) ... O(x, y,(x)) 

so that the roots of the equation O(x)=0 are the x-coordinates { of D,. C. 
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c ~  

f 

Dt 

, / (~ 'y2(~)) 

Thus 0 (4 )=0  and so 

80  
8x (~)a~+ao(~)=o, 

where 6 69 is the t-differential of O(x). Substituting in (1.7) 

S' r(~, q) 6 0(4) a u = - ~  ~ . 

8x (4) 

We may assume that near a particular value t = t  and ~ =r  that r/=Yv(~) for one v 
and 0(4, y~(r 4= 0 for v 4 = v (c.f. the above figure). Then 

6 0  (4) = ~ 0 (4, Yl (4))..~. 0 (4, Y,(r 6 0 (4, Y~(~)), 
u 

so that, taking into account that only the term v=v actually appears, 

--r(~, t/) 6 0 (4)= + ~ r(r Yv(~)) 0 (4, Y.(~))...v 0 (4, Y~(~)) (5 0 (~, Yv(~)) 
v 

= Y  ~,(~) dt, 
i 

where 
8O 

qh(x) = - ~  r(x, yv(x)) 0 (x, Yx (x) ..~. O(x, y , ( x ) ) ~  (x, y~(x)) 

is a rational function of x by (a) above. Consequently, by (b) 

is rational 1-form in the dti's. Q.E.D. 

Our second proof of Abel's theorem is again algebraic and is based on an 
especially symmetric formula for the variation 6 u(t) of the abelian sum (1.6). To 
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give this we write the abelian differential in the form 

r(x, y) dx 
(1.8) c o - - -  

Of 
- - ( x ,  y) Oy 

an expression which will be motivated when we discuss Poincard residues in 
Section III c. For simplicity we assume that t is a single variable and write as 
before 

Dr" C = ~, (~ (t), rl(t)), 
(~(t), ~(t)) 

u ( t ) = Z  I ~o. 
(~o, no) 

Then the variation 

u' (t) = ~ r(~ (t), tl(t)) r (t) 
Of 
0y (~(t), q(t)) 

Differentiation of the relations 

f(r  (t), q (t)) = 0, 
0 (4 (t), ,7 (t)) - 0 

gives 

0x ~'(t)+ q'(t)=0 

0 0  , 0 0  , 00 
0y ~ (t)+~-y ,7 (t)+-bT=0. 

With the notation 

0(f,g) 0 f  0g Of 0g 
0(x,y) 0x 0y 0y 0x 

for the Jacobian determinant, these linear equations may be solved to yield 

00 0T 
Ot Oy 

~'(t) = 
off ,  o) " 
O(x,y) 

Plugging this in the formula for the variation of the abelian sum gives 

(1.9) u ' ( t )=~  s(~(t),tl(t)) 
0(L 0) (~(t), ~(t)) 
0 (x, y) 
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where 
00 

(1.9') s(x, y)= r(x, y) ~ i -  (x, y) 

is a rational function of (x, y). Again, by an easy extension of (b) the sum in (1.9) 
is a rational function of t, thus proving Abel's theorem. 

This argument is not essentially different from the f i r s t - the  reason for pres- 
enting it is that writing the abelian differential in the form (1.8) allows us to eliminate 
~'(t) from the variation of the abelian sum in a manner which will tie in with 
residues in Section IIIb. 

Both these proofs are rather general in nature and fail to yield explicit formulae 
for the variation 6 u of the abelian sum (1.6), this obviously because (a) and (b) 
are general principles and not explicit expressions. In case D, is the family of 
straight lines 

O(x, y)= y--tl x--t2=O 

and the abelian differential is 

p (x, y) dx 
gO= 

~ f  
- -  ( x ,  y )  0y 

0u 
we now compute explicitly the derivatives =- -  (i = 1, 2) using the Lagrange inter- 

polation formula (c.f. Section IIIb, (3.22) for a general version) 

g(xi) --constant term in ~'x g(x)~ (1.10) V 
h'(xl) [ h(x) J 

for polynomials g(x) and h(x), the latter having simple zeros at x=x~. For any 
function a(x, y) set A(x)=a(x, tl x +t2) so that 

, Oa Oa 
(1.11) A (x)=~-x  + q ay 

The roots of F (x)= 0 are the x-coordinates ~ of the intersection Dr" C. Differenti- 
ation of f(~(t  1, t2), t 1 ~(t l, t2 )+t2)=0 gives 

0T 0 f \  Of 
~-X "+" tl ~ y  ] ~ 1  -t- ~ -~-y = 0  , 

of of\a , of 

which, by ( 1 . 1 1 ) ,  amounts to 

F'(~) ~ +  ~ Of -~y = 0 ,  

(1.12) 
, O~ Of F =0. 
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For the abelian sum u (t)= ~ ~ co, 

Ou p(~, rl) c?q 

t3tl = ~  Of 
- -  ( 4 ,  ,1) Oy 

= - Z  F'(~) (by(1.12)) 

CP(~) 
= - Z  F'(~) 

~ u  
since r/= tl ~ + t2. Making the same computation for and using (1.12) gives 
the beautiful formulae t~t2 

OU { -- x2 p(x, tl x + t 2) t 
atl =c~ term in . f (x ,  tl x+ t2) 

(1.13) 
OU { --xp(x, tl x +t2)" ~ 
~t2 =constant  term in f ~ , q x - ~ t 2 ) -  j 

Note that the right-hand side of (1.13) are obviously rational functions of 
(q, t2), thus again proving Abel's theorem for this special case. 

More interestingly, we observe that 

Ou Ou 
(1.14) 0tl =t?t2 = 0  in casedegp<deg f - 3 .  

To interpret this, we make the following 
P 

Definitions. (i) The abelian integral u(P)= S ~ is of the first kind if it has no sin- 
Po 

gularities. (ii) The abelian integral u is of the first kind relative to the family of 
curves Dt if the abelian sum u(t)=~u(P(t)) has no singularities. 

Obviously, (i)=~ (ii) but not conversely. If (ii) holds, the u(t) is necessarily 
constant. We may rephrase (1.14) by the 

(1.15) Proposition. I f  f (x ,y)=O defines a curve C of degree n and having no 
multiple components, then any abelian integral 

u=iP(x ,y )dx  
~ ( x ,  where deg p < n -  3 

Y) 

is of the first kind relative to the family of lines in IP 2. 

When we discuss residues in Section III b, we shall prove the same statement 

for the abelian integral u =~ p(x, y)dx where deg p ~ n - 3  and Dt is the family 
Of (x, y) 
dy 
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of all curves of degree m. This more general assertion will be used in Section Ic 
(c.f. (1.28)). 

(b) Inversion of the Trigonometric and Elliptic Integrals 

As we have just seen, Abel's first idea was that an abelian sum (1.6) associated to 
an abelian integral 

(x, y) 

(1.16) u=  S r(x,y) dx 
(x, yo) 

was expressible in elementary terms despite the complexity of the integral itself. 
His second idea was to invert the integral (1.16) and consider the coordinates of a 
point (x(u), y(u)) on the curve f (x ,  y )=0  as functions of u. Later on, it was found 
by G6pel, Rosenhaim, and especially Jacobi, that it was necessary to invert a set 
ut . . . . .  Up of such integrals, and we shall discuss this later. For the moment we 
wish to show how Abel's t h e o r e m - o r ,  more precisely, the explicit formulae 
(1 .13)-may be used in a very elegant manner to invert the two integrals with 
which our discussion began. 

We begin with some remarks concerning periods. Although not necessary, 
it will make the argument clearer if we now assume that the curve C is irreducible 
and is the image of a compact Riemann surface (~ under a holomorphic mapping. 

8 f  
At points where -ff~-v ~e 0, we may use x as local coordinate on C, and similarly 

points ~ = 0 of the linear projection C ~ (x-axis) we may use y as at the branch 

provided ~ :~ 0. At the singular points P where d f =  0 it is necessary coordinate 

to give a neighborhood of P parametrically by a coordinate ~ on (~ for which the 
inverse mapping is expressed by Puiseux series. The abelian differential r(x, y) dx 
is then a meromorphic 1-form ~o on C having certain poles /]1 . . . . .  PN. On the 
punctured Riemann surface C*=  C -  {/]1 . . . . .  PN} the abelian integral (1.16) is, by 
Cauchy's theorem, well defined up to periods S co where 7eH1(C*,7/). These 
periods form a subgroup A of 112. 

The idea of inversion using Abel's theorem is this: Near a point Po ~ C where co 
is holomorphic and ~o(Po)+0 the integral (1.16) may be inverted by the ordinary 
inverse function theorem. Then, by use of an addition formula we may extend 
(x(u),y(u)) to entire functions. Let's first do the trigonometric case, as this 
apparently served as a model to Euler, Lagrange, and Abel. 

dx dy 
Our curve is the circle x 2 + y 2 = l  and co . . . .  We consider the y ~ "  

family of lines y = t 1 x + t2 and denote by/]1 = (xx, Yl) and P2 = (x2, Y2) the variable 
points of intersection of C with this line. 
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For the abelian sum 

(X,, Yl) (X2, Y2) 

(o, 1) (o, i) 

the formulae (1.13) yield (note 2dx '~ 

~u I - 2 x 2  ~ - 2  
- -  = constant term in 
~tl ~f(x~i,1 x-+ t2iJ = 1 + t~' 

8t--~ = constant term in f ( x ,  t~ x + t2) = O. 

Integration of these equations gives 

u (t) = - 2 arctan t I = arcsin \ 1 + t~ f" 

Elementary manipulation leads to the relation 

- 2 t  1 
l + t ~  = x '  y2+x2y l '  

so that, in classical notation, we have derived the formula 

x, dx x2 dx x, r2+r2~, dx 

we invert the integral u = S ~-~ in a neighborhood of (0,1) by defining the trigonom- If 

etric functions according to the relation 

(sin u, eosu) dx 
(1.18) u =  j - - ,  lul<~, 

(o, 1) Y 

then (1.17) becomes the familiar addition theorem 

sin (ul + uz) = sin ul cos uz + sin u2 cos u,, 

with a similar one for cos u. Taking ul =u2 yields the duplicationforrauIa 

(1.19) s in2u=2s inucosu .  
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Now whereas sin u was initially defined in A(e)= {lul < ~} by the inversion relation 
(1.18), we may extend its domain of definition to A (2 e), then to A (4 e), and so forth 
by repeatedly using (1.19). This leads to entire analytic functions (sin u, cos u) 
satisfying (1.18) for all values ofu. It is straightforward to check that the group of 
periods is •. re, and in this manner we have arrived at the essential properties of 
the trigonometric functions as defined by an algebraic integral. 

Of course this was well known at the time, but our point is that Abel's method 
works even better (because of (1.15)) for the elliptic and higher integrals, to which 
we now turn. 

dx 
Suppose then that C = {f(x, y)= 0} is a nonsingular cubic curve and co = 

with abelian integral ~f/~Y 

P 

(1.20) u(P)= ~ co. 
Po 

dx 
Eventually, we will take f(x, y)=y2_p3(x) so that co= and u is up to a 

2 l/P(X) 
change of variables the previously defined elliptic integral. According to (1.15) the 
abelian integral (1.20) is of the first kind relative to the family of lines in IP 2, and 
since C is assumed nonsingular it follows that u is simply of the first kind. Abel's 
theorem in the form (1.14) gives the relation 

(1.21) u(P)+u(Q)+u(R)=K 

where P, Q, R are the intersection points of C with a variable line L. 

Y 

(l R 

J 

This is a picture of the real points on the curve y2 =p(x) where p(x) is assumed to 
have real coefficients. 

We shall choose our base point P0 to be aflex on C, which will now be explained. 
Since the curve is nonsingular, at each point P c  C there is a unique tangent line 
Te having contact of order > 2 with the curve at P. It is elementary that there are 
a finite number of flexes where Tv has contact of order > 3. In fact, if deg C = d, 
then the number of flexes is 3d(d-2) (counting multiplicities), as may be proved 
by showing that P is a flex if, and only if, 

F (P) = 0 = Hp(P), 
( 0  2F ] 

where F(xo, xl, x2)=0  is the homogeneous equation of C and H f = d e t  \•xi ~xj! 
is the Hessian of F. 
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Suppose then that Po = (Xo, Yo) is a flex on C with flex tangent Lo. 

Of (Po)+O so that co(Po)+O. As before, we invert the elliptic We may assume that ~yy 

integral by the relation 

(x(u), y(u)) 

(1.22) u =  ~ co 
(xo, yo) 

valid in a disc A(0 = {lul < 5}. Set P(u)=(x(u), y(u)). For ~ sufficiently small and 

ul, u2 eA (6), the line P(ut) P(u2i will be a small perturbation of Lo and will meet C 
in a third point P(u3) for some u3EA(e ). According to the addition formula (1.21) 

(1.23) ul +uz+u3=O. 

Now the coordinates of P(u3) are clearly rational functions of the coordinates of 
P(uO and P(u2), so that we may reinterpret (1.23) by saying that 

x(-(ul  + u2))= R(X(Ul), y(ul), x (u2), y(u2)), 

Y( - (uz + u2)) = S(x (Ul) , y (ul), x (u2), y (u2)) 

where R and S are rational functions of their variables. In particular, there is a 
duplication formula 

x ( - 2 u) = R (x (u), y (u)), 

y ( - 2 u) = S(x (u), y (u)) 

as in the trigonometric case, and using it we may extend (x(u), y(u)) to entire 
meromorphic functions satisfying the equation of the curve and (1.22), or equiv- 
alently by taking the differential of that equation 

f (x  (u), y (u)) = O, 

(1.24) 
x'(u) =~y (x(u), y(u)). 

In case f(x, y)=y2 -p(x) we have constructed the Weierstrass functions. 
Keeping this same equation, the Riemann surface C = C may be visualized as 

a 2-sheeted covering of the x-plane branched at the roots xl (i = 1, 2, 3) of p(x) 
together with the point x = c~. 

d2 
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There are thus two generating periods gv = S ~o, and we claim that they are linearly 
6v 

independent over IR. Indeed, if there were a linear relation ~1 =1 +~zZCz=0 for 
~v real, then multiplying ~o by I/zq and multiplying the above relation by - 1/~ 
gives 

~ 2 = 1 ,  c~ real. 

Consequently, rt 2 is real and so q = o~- e3 has no periods. Setting v = S q we have 

c c 

c 
= 0  

by Stokes' theorem, which is a contradiction. If follows that A is a lattice in ~, and 
P(u)=(x(u), y(u)) gives a holomorphic mapping 

(1.25) ff~/A P , C c l P  2. 

This mapping is unramified since P* ~o = du 4= O, and thus for topological reasons 
is a finite covering. In facte it is one-to-one:, If P(Ul)=P(u2) , then for a variable 
point u the line P(ul). P(u) = P(uz)" P(u) has intersection P(ul) + P(u) + P(u') with 
C where u' is a single-valued function of u near some point Uo. The relations 

ui +u+u'(u)=-O(A) 

for i =  1, 2, then imply, by subtraction, that u x -  u2 =-O(A) which is equivalent to 
P(u) being one-to-one. 

In this way, by essentially algebro-geometric considerations of an elementary 
nature we have arrived at the existence and basic properties of the elliptic functions. 
The philosophy of using an addition theorem to propagate a local analytic object 
into a global one is what underlies our main theorem discussed in the introduction. 

(c)  Singular Cubics-General Addition Theorems 

In the previous section we have shown how Abel's theorem in the form (1.21) 
leads to a group structure on a nonsingular cubic curve. We will now discuss 
briefly how a generalized form of (1.21) may be similarly applied to any irreducible 
curve C of degree > 3. 

We begin with the case where C is a singular cubic. Any singular point Po 
cannot be worse than a double point, since a line Po--~(Q e C) can have only three 
intersections with C. Similarly, there can be only one singular point. In case Po 
is an ordinary double point we may choose coordinates such that Po =(0, 0) and 
the defining polynomial has the form f ( x ,  ) = x y + (...) where (...) denotes higher- 
order terms. One branch of C passing through Po is given parametrically by 
y=y(x )=x+( . . . ) ,  and the other by x=x(y )=y+( . . . ) .  Since on C 
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the abelian differential 

dx dy 
qJ = O f - ~  - = "  t~f/Ox 

has on these branches the respective forms 

f f = ( l + . - . )  dx, ~k=- - ( l+ . . . )  dy. 
x y 

If L is any line tending to pass through PO, 

R C 

then the logarithmic singularities in the first two terms of the abelian sum 
Q R $ 

(1.26) I +I0+I0---K 
cancel out, thus explaining why u =S 0 is of the first kind with respect to the family 
of lines in IP 2. The addition theorem (1.26) may now be used to make C* = C -  {PO} 
into a group by repeating the argument from the previous section. 

We may identify this group as follows. Choose a line Lo with linear coordinate t 
and not containing PO. The line Pot meets C in the cycle 2PO+Q(t), and the map 
t--* Q(t)is a one-to-one rational transformation. We may choose t so that the tan- 
gent lines to the two branches of C passing through PO correspond to t = 0, oo. 
Taking into account the expressions for 0, or equivalently, the logarithmic nature 

12 

of the integral u(Q)= S 0 as Q tends towards P0, we see that the pulled back 
differential ~k(t) has first-order poles at t =0,  oe. Multiplying by a constant if 

necessary, it follows that 0( t )=  at. The addition formula (1.26)now reads 
t 

tte) dt ,(R) dt t~s) dt 
T + J 5-+ J T----K, 

so that t(S)=(t(Q)t(R)) -1. Choosing our base point to be t =  1, we obtain the 
addition formula 

dt dt+ i~ dt='i~-- ~- (2rci) iT t 
characteristic of the logarithm function. The group in this case is 112". 

In the remaining case where the tangents to C passing through Po coincide, we 
may use the same projection method to give an isomorphism 

C- {PO}~_r {~}. 
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The differential ~b(0 will be holomorphic and nowhere vanishing on IE, hence after 
multiplying by a constant if necessary, ~k(t)=dt. The group structure is just the 
usual additive structure on r  

t(u) 

Inverting the abelian integral u =  S ~(t) in these two cases gives t(u)=exp u 
and t (u) = u, respectively, to 

There is nothing new in this. Our point is that Abel's original theorem applies 
equally to singular cubics. 

Now we come to curves of higher degree. The first step is to extend (1.15) to 
intersections of our curve C with curves D of degree m>__ 1. Assuming that 
C--{f(x,  y)=0} is of degree n and meets D={g(x, y)=0} in mn distinct finite 
points, we will in Section IIIb (c.f. (3.21)) derive the Jacobi relation 

(1.27) x~ h(P~) ~ ~3(f, g) O, d e g h < m + n - 3 .  

a(x, y) (p~) 

Comparing this with (1.9) and (1.9') we find: 

(1.28) The abelian integral 

(1.28') u=  S p(x,y)dx degp_<n-3  
Of/~y(x, y)' 

is of the first kind relative to the family of all curves of degree m. 

Now we assume C is irreducible, but otherwise has arbitrary singularities. On 
the basis of (1.28) it is pretty clear that we should consider simultaneously all 
abelian integrals of the type (1.28'), although the recognition that this was so 
required some effort historically. (c .f .C.G.J.  Jacobi, Considerationes generales 
de transcentibus abelianus, Gesammelte Werke, Band II, pp. 7-16 and De func- 
tionibus darum variabilium quadrupliciter periodicus, Ges. Werke, Band II, 
pp. 55-78 for two of the earliest treatments of the general inversion problem.) 
Recall that the vector space of polynomials of degree __< d has dimension 

(d+ 1) (d+2) d(d+ 3) 
- + -1 ,  

2 2 

and choose a basis {p~(x, y)} for those of degree < n -  3. The differentials 

p~(x, y) dx 

~y (X, y) 

span a vector space whose dimension 

(n  - 1) (n  - 2 )  

2 



3 4 2  P . A .  G r i f f i t h s  

is called the virtual genus of the curve C. (Early writers used the word deficiency.) 
The associated abelian integrals are denoted by 

P 

P~ 

where P~ is a base point to be selected later. 
For a general curve D of degree m we set 

mn 

D.C=ZP~.  
v = l  

According to (1.28) the abelian equations 
mn 

(1.29) E u,(P~)--K ( a = l , . . . , n )  
v = l  

impose n constraints on the points {P~}, suggesting that m n - n  of them should 
rationally determine the rest as was the case with the straight lines meeting the 
cubic. If this can be proved, then we will be in formally analogous situation to the 
cubic in that we will be in possession of a general addition theorem for the n 
abelian integrals u, and can use this to propagate a local inversion relation into 
a global one. 

To carry this out we shall be interested in intersections D. C where 
D = g(x, y)= 0 has degree m >> n. If D '=  {g'(x, y)= 0} is another curve of degree m, 
then D and D' cut out the same set of points on C if, and only if, 

g(x,y)-g'(x,y)= h(x,y)f(x,y), degh<m-n.  

Using the notation of linear systems, we denote by ID,,[c the set of all points of the 
form D. C. Then ID,,Ic is a projective space of dimension 

(m+ 1)(m+2) (m-n+l ) (m-n+2)  
l =mn-n .  

2 2 

This second appearance of the arithmetic genus n is the key. Namely, given 
m n - n  general points{Qj} on C, by what we just proved there will be a unique 
curve D ~ ID,,]c passing through the QSs. Writing 

(1.30) D. C=(Qx +.,.+ Q . . . .  ) + ( R , + . . . + R ~ )  

we have shown that a general set of m n - n  points {Q j} rationally determines a 
residual set {R,} according to the rule (1.30). 

Referring to (1.29) the abelian equations 

Ytln- ~ 

(1.31) • u,(Qj)+ ~,, u~(Rp)=K ( a = l  . . . . .  n) 
j = l  p= l  

are satisfied. Since the {p~(x, y)} are linearly independent, if we choose the {Q j} 
generally (i.e., in a Zariski open set) the Equations (1.31) will be independent. 
Putting this together with what we proved in the previous paragraph gives the 
following statement which is beginning to take on the shape of an addition 
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theorem: 

(1.32) For a general set of points {Q~} ( j = l  . . . . .  mn-~z)  the abelian equations 
(1.31) rationally determine the residual set {R~} (fl = 1 . . . .  , n). 

In fact, there will then be a unique curve DEIDml c such that (1.30) holds. 
We now will distill out of (1.32) the addition theorem leading to the inversion 

of the n abelian integrals u~. Choose m large relative to n and fix m n - 3 n general 
points {Sk} on C. We will consider zero cycles F e =/]1 + " "  + P~, Fe = Q1 + " "  + Q,, 
etc. of degree ft. Given F e and F o selected generally, we may, according to (1.32), 
rationally determine FR by the abelian equations 

(1.33) ~u(P~)+ ~" u(Q,)+ ~ u ( R z ) - L ,  
fl ~=1 2 = 1  

where 

u (P) = (Ul (P) . . . . .  u,~(P)) 

and L--  (L1 . . . . .  L~) has entries 

L~ = K~ - Y" u~( Sk). 
k 

It is now possible to repeat the reasoning in the cubic case with (1.33) playing the 
role of (1.21). Fixing our base point cycle Fp = P1 + " "  + P~ such that 

det P~(P~) 
~fy (p~) #0,  

the equations 

(1.34) u~=~u~(P~), lul<~, 

may uniquely be solved for points P~(u) close to P~. This is just an inverse function 
theorem. Set P~(u)=(xa(u),yp(u)) and consider a generating set ~ol . . . . .  ~o N of 
rational functions ~o~(xl, Yl . . . .  , x , ,  y,) which are symmetric in the (x,, y,). Then, 
setting ~0 =(qh . . . . .  ~o~), 

F(u) = q~ (xl (u), Yl (u) . . . .  , x,~(u), y,du)) 

will be a meromorphic function of u for lul <~. According to (1.33), for u and u' 
satisfying [u[ < 6, [u'[ < 6, 

F ( -  (u + u')) = R (F(u), F(u')) 

will be rationally expressed in terms of the F,(u) and F~(u'). In particular, there will 
be a duplication formula and subsequent propagation of F(u) to a vector of entire 
meromorphic functions. We have in this way constructed an entire meromorphic 
mapping 

F: r / A --~ 1P N 
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given by F(u)=[1, Fl(u) . . . .  ,FN(u)] and where A c e "  is a discrete subgroup of 
periods. The defining relation for F is that F(u) determines points (x~(u), y,(u)) on 
the curve such that the equations 

(x#(u), rafu)) 

(1.35) u~--~ S g,~, modulo L~ 
# (xa, r~) 

are satisfied. This is the general inversion theorem. 
We have also made the zero cycles Fp = t]1 + "  + P~ into a group var ie ty-  i.e., 

the group law is given rationally. In fact, this group is IE~/A, and is the famous 
Jacobian variety (or generalized Jacobian in case C is singular). 

Throughout this discussion we have been somewhat careless about using the 
adjective "general." For a general u the equations (1.35) uniquely determine the 
points (xp(u), y#(u))-this much we have p roved -bu t  this will not be true for 
all u if the virtual genus re=> 2. The detailed analysis of what is going on here leads 
to the beautiful and subtle theory of special divisors initiated by Riemann and 
which is continuing to the present. The aforementioned notes Lectures on curves 
and their Jacobians by David Mumford give references and discussion on this 
question. 

To conclude this discussion, we wish to make a comment concerning reducible 
curves. The Jacobi relation (1.27) requires neither f or g to be irreducible, only 
that they should meet in m n distinct points. Suppose then that f (x ,  y)= ll(x, y) 
12 (x, y) 13 (x, y) is a product of three distinct linear factors, so that f = 0 defines a 
triangle T=L 1+L2 +La.  Repeating the same counting constants argument just 
given, we find that the intersections [D,,IT of curves D of degree m with T depend on 

(m+ 1)(m+2) ( m - 2 ) ( m -  1) 
2 2 

1 = 3 m - 1  

parameters. Thus the 3 m points of intersection 

D m �9 T 

cannot arbitrarily prescribed by giving m points P~, 1 . . . . .  P~,,, on each line L i. 
The Jacobi relation (1.27) imposes one condition on these points in order that 
they be a complete intersection. 

This is, of course, an Abel-type condition: Inversion of the abelian integral 

d x  
u 

= J  Of/Oy(x, y) 

will lead to a disconnected group in the same way as the irreducible cubics previously 
gave connected groups. Upon doing this, one finds that here the group consists 
of 3 disjoint copies of C*, corresponding to the three IP 1 -  {0, ~} ' s  obtained by 
deleting the vertices of the triangle. If t i is a coordinate on Li such that the two 
vertices meeting Li correspond to ti = 0  and ~ ,  then, after suitable normalization, 
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the condition that the points lie on a curve D,, is 

ti(Pi, v =1. 
i = l  

In a similar manner, all of the preceding discussion may be extended to cover 
reducible curves. 

(d) The Poncelet Theorem 

As mentioned in the introduction one of the striking features about the classical 
Abel's theorem are the applications one can make to elementary problems in 
geometry. A simple one is the triangle mentioned in the preceding section; we 
shall now discuss the somewhat more sophisticated application to the classical 
Poncelet problem concerning polygons inscribed in one conic and circumscribed 
about another. So far as I can tell, it was Jacobi (Ober die Anwendung der ellipti- 
schen Transcendenten auf ein bekanntes Problem der Elementargeometrie, Ge- 
sammelte Werke, Vol. I (1881), pp. 278-293) who first applied elliptic functions 
to the question, and we shall present a variant of his method here. It is interesting 
to note that the result we shall prove will be equivalent to the addition law for an 
elliptic integral, so that the early somewhat complicated proofs of the Poncelet 
theorem must have amounted to synthetic derivations of this addition formula, 
presumably in the same way in which the addition formula for the sine function 
may be derived by drawing pictures. 

Before giving the Poncelet theorem some preliminary considerations are 
needed. We recall that in Section I a the addition formula for the elliptic integral 

dx 
u = S was stated as being pretty much what was known before 

1/(1 -x2 ) (1  - k  2 x ~) 
Abel. This integral is associated to the quartic curve Co defined by yZ-p4(x)=O 
where p ( x ) = ( 1 - x 2 ) ( 1 - k  I xZ). Setting y =  1/y' and x=x'/y', the equation of Co 
becomes 

y'2-~(x',y')=o 

where ~ is homogeneous of degree 4 in x' and y'. Thus in the projective plane the 
curve Co has a nonordinary double point P0. The addition formula for the Legendre 
integral may now be derived by fixing another point R on Co but not on the line 
y ' = 0  and considering the linear system of plane quadrics Q which pass through 
P0 with tangent line y' = 0  there and also pass through R. Since the set of all quadrics 
depends on oo 5 parameters, this linear system contains oc 2 quadrics. Any such Q 
meets Co four times at P0 and once at R; thus 

Q. Co=4Po+R +(A+ B+C), 

since there are eight intersections in all. We are then in a formally analogous 
situation to the plane cubics where A, B, C now play the role which the variable 
points of intersection with a line played there. In particular, the Legendre formula 
is just u (A) + u (B) + u (C) = constant. 



346 P.A. Griffiths 

For  the Poncelet theorem we want to consider a plane quartic C = {f(x,  y)= 0} 
having two distinct ordinary double points P and Q. Given a point A = A1 on 
C - { P ,  Q}, the line AP will meet C in point B~EC-{P,  Q}. Next, the line B~ Q 
will meet C in a point A2 ~ C -  {P, Q}, and we may keep on going in this manner. 

A ;  A 2 

B2 

We then pose the question: When does AI=A . for some n? 
To answer this we consider the abelian integral 

u = ~ l(x, y)  dx 
~3f/~3y(x, y) 

where l(x, y) is a linear polynomial. According to (1.15) this integral is of the first 
kind relative tcr the set of lines in IP 2. However, u is not necessarily of the first kind 
on C. To see what is going on, we may assume that P is the origin and 

f ( x ,  y) = x y + (higher terms). 

On the branch of C with tangent line y = 0  the curve is given parametrically by 
y(x) = x + (higher terms). Thus if 1 = ~ x + fly + 7, 

u=~ (~+,~x+...) dx 
x 

is an improper integral unless 7=0.  In conclusion, if l(x, y)=O is the equation of 
the line PQ. then u is of the first kind on C, and we shall take this case. 

Applying now Abel's theorem to the intersections of C with the lines in our 
figure gives 

u(A1)+ 2u(P)+u(B1)=-K 
u(Ba) + 2u(Q) + u(A 2) = K 

u(A,,_ O+ 2u(P)+u(B,,_O= K 
u(B,,_ O+ 2u(Q)+ u(A,,)= K 

where K is a constant and = means congruent modulo periods. Adding up these 
equations with alternating signs induces telescoping and we arrive at 

u(AO+ 2nu(P)=u(A,)+ 2nu(Q). 

Thus, a necessary condition for A1 = A, is 

(1.36) 2n(u(P)-u(Q))=O. 
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We claim that this condition is also sufficient. To see this, project C onto a 
line L from the double point P. Taking t to be a linear coordinate on L, this is a 
2-sheeted covering with four branch points as may easily be checked. Taking one 

dt 
of these to be t = 0% our abelian integral becomes u = ~ ~ and we are back in 

the cubic case where it has already been proved that 

u: C---~C/A 

is an isomorphism. This proves the sufficiency of (1.36), and leads to the following 
conclusion: 

(1.37) We have A t = A ,  in the above figure if, and only if u(P)-u(Q)  2nn " 

This condition is independent of the initial point A1, and imposes one constraint on 
the pair of points P and Q. 

Now to the Poncelet theorem. We consider a pair of nonsingular conics C 
and D in the projective plane which we assume are nowhere tangent. By stereo- 
graphic projection from a point Pe  C onto a line L with linear coordinate 4, we 
may rationally parametrize C by ~ - ,  (x(~), y(~)) where x(~) and y(~) are quadratic 
functions of 4- Similarly, if we fix a tangent line T o to D with linear coordinate tl, 
then through each point tl there is a unique tangent line 

y=a(rl) x + b(rl) 

to D other than To. Here (a(~/), b (r/)) are quadratic functions of r/describing the 
dual curve D* ~ IP 2.  of all tangent lines to D. 

C P 

L 

Now suppose we begin with a point/]1 �9 C, draw a tangent through/]1 to D 
meeting C in Q1, then draw the other tangent to D through Q1 meeting C in P2, 
and so forth. 

PI Q2~ IP2 
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The Poncelet problem is when does P,=P~ for some n- i .e . ,  when do we obtain a 
closed polygon inscribed in C and circumscribed about D? This is clearly similar 
to the previous problem concerning the quartic, and may be derived from it as 
follows: 

In the product C x D * ~  - IPlx IP 1 we consider the incidence correspondence 

I = {(P, T): Pe  T}. 

This is clearly the variety relevant to our problem. It is a nonsingular curve in 
IP ~ x IP ~ since, due to the nontangency of C and D, through each point (P, T) one 
of the two coordinate axes IP ~ x { T} and {P} • IP 1 has two distinct points of 
intersection with I. Now IP ~ x IP ~ contains �9 • r as an open set with coordinates 
(4,~/), and the map (4,t/)--~ [1, 4, r/] induces a rational mapping F of IP 1 x lP 1 

to IP z. Near a po in t raVl  a x  qo on IP 1 x IP 1 we may use local coordinates ~ =-~- t/] 

and then F(4', r/)= [1, ~7, ,r/] =[~' ,  1, 4'r/]. Thus F blows the curve ~ +IP '  down 

to the point [0, 1,0], and similarly IP 1 • ~ blows down to [0, 0, 1]. Near ~ x 

local coordinates 4 ,= 1 , r / , = _ l  and then F(4',r/ ')=[4'r/ ' ,r/ ' ,~'] is not w e  u s e  

defined there. r ~/ 
We may assume that I does not pass through ~ • ~ ,  and then E = F (I) is a 

plane curve having affine equation 

x (4) = a (q) y (r + b (r/), 

and is thus a quartic. E is nonsingular away from P = [0, 1, 0] and Q = [0, 0, 1], 
and these are ordinary double points since I meets IW x oe and oe x IP a in two 
distinct points. The lines through P are given by r = constant and those through 
Q by r/=constant;  consequently, the Poncelet construction is just our previous 
straight line construction on the plane quartic. The conclusion (1.37) translates 
into the 

Poncelet Theorem. The condition that the polygon in the preceding figure be closed 
with n sides is independent of the initial point ,~ and its satisfaction imposes one 
condition on the pair of conics C and D. 

The following example was shown to me by Mark Green: If C is the circle 
x 2 + y 2 = 1 ,  D the ellipse x2/a2+y2/b2=l ( a , b < l )  and we want a four-sided 
closed polygon, then by the Poncelet theorem we may begin at any point, say, 
(a, ] / i--Z~),  on C and the symmetric figure 

gives b = ]f]-S-~.  
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II. Abel's Theorem and the Trace 

(a) Holomorphic and Meromorphic Forms on Analytic Varieties 

We now change our viewpoint and lay the local analytical foundations for one 
of the two generalizations of Abel's theorem discussed in this paper. Our immediate 
purpose is to define holomorphic and meromorphic  differential forms on generally 
singular analytic varieties. The definition of holomorphic forms is not the usual 
one, but rather is based on the finiteness of certain L2-norms in much the same 
spirit as M. Noether 's original definition of differentials of the first kind on an 
algebraic variety (c.f. the reference to Noether in the introduction). 

We begin with an elementary lemma in several complex variables. 

(2.1) Lemma.  Let h(z, w)=h(z I . . . . .  z,_l,w) be a holomorphic function in the 
punctured polycylinder P* = {(z, w): Izil< 1 , 0 < l w l <  1}. 7hen h extends holo- 
morphically across the divisor w = 0.~ 

j I h l 2 d / ~ < ~  
p *  

where d I~ is Euclidean measure. 
Similarly, h has a pole along w =0.r 

lhl2 d l~=O(r N) 
P* [r] 

where P* [r]= ([zil < l, l < l w l  < l} is an annular ring around this divisor. 

Proof We expand h in a Laurent series 
+ v  

h(z,w)= ~ hv(z) w ~ 
v = c t )  

and use the orthogonality relations 

1 ~ w~Ud(argw)=(r2 #=v 
2rttwl=p ).0 #4:v 

to deduce that 

1 +~ 
f Ihl2d# = ~ ( ~ [h~12)c~(r) 

2 rt e*'tr] v = - ~ Iz, I _-< 1 

where 

1 

c~(r)= log r 

r2V+2_ 1 

2 v + 2  

v <  - 2  

v =  - 1  

v > 0 .  

Our lemma follows from this. Q.E.D. 
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Suppose now that V is an analytic variety of dimension n with singular locus 
Vs. A holomorphic n-form q* on V shall be given by a holomorphic form in the 
usual sense on the complex manifold V - W =  V*, where W is an analytic sub- 
variety of V containing V, but not containing any irreducible component of V, 
and where q, satisfies the local LZ-estimate 

(2.2) (l/-Z-{) "2 j" r ^ q7 < oo 
O n V *  

in a neighborhood U of any point Pc W. The vector space of holomorphic n-forms 
is denoted by O"(V). In case V is a manifold we recover the usual notion of holo- 
morphic form by appealing to the above lemma. More precisely, suppose ~, is 
holomorphic outside a divisor W on V and satisfies the local LZ-estimates. Then, 
by the lemma, ff extends holomorphically across the smooth points W-W~ of 
W, is thus holomorphic outside the subvariety W~ of codimension > 2 on V, 
and then by Hartogs' theorem extends holomorphically to all of V. 

Similarly, a meromorphic n-form q* is given by a holomorphic form on V* = V -  
W satisfying the L 2 growth condition 

(2.3) (]/~-1)"2 5 ~h ̂  ~ = O ( r  N) 
U [rl 

with U Jr] being the intersection of a neighborhood U of a point Pc W with an 
annular ring of inner radius 1/r around W relative some local embedding of U 
in 112 N. The meromorphic n-forms are denoted by J /*  (V). 

For q <n, a holomorphic q-form ff is given by a holomorphic form in the 
usual sense on V* = V -  W as above, and where for any local piece of q-dimensional 
analytic subvariety Z c  V but Z r  W the restriction r  is holomorphic in the 
previous sense. Similarly for meromorphic forms. 

The usual properties of forms, such as admitting exterior products, exterior 
differentiation, and pulling back under holomorphic mappings may be verified 
for the holomorphic and meromorphic forms faq(V) and ~//q(V) as defined above. 
This is a little tedious to do directly from the above definitions, so here is a quick 
way to see what we want by using a big theorem: A resolution of singularities 
f :  I7"--+ V is given by a complex manifold 17" and proper, surjective holomorphic 
mapping f which is an isomorphism outside a proper subvariety of V. By Hiro- 
naka's theorem such resolutions exist, and any two (~,  f~) (i = 1, 2) are dominated 
by a third according to the diagram 

l? 1 If~ 17 z 

? 

where fa =f~ ~ g~ =f2 o g2. It follows easily from this, together with the L2-definitions, 
that 

f * :  (2' (V) --~ Y2q (I7 ") 
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and 

f * :  .///q (V) -~ J[~(l?) 

are isomorphisms for any resolution f :  17--, V, and since any holomorphic 
mapping h: V-+ V' may be resolved according to a diagram 

17 ~+17' 

1 l 
V h-+V '  

the holomorphic and meromorphic forms as defined above have all the usual 
properties one expects of differential forms. 

As any easy example, for the complex projective space, 

(2.4) 0 q (IP") = 0 (q > 0). 

Proof If O~O~Qq(IP'), then for some linear subspace IPqcIP" the restriction 
~O]lPq~O. On the affine open set r  q 

t~=h(z) dz 1/x.../x dzq 

where the holomorphic function h(z) satisfies 

Ih(z)l 2 d~t < oo, 
Cq 

which is impossible. Q.E.D, 

(b) The Trace Mapping 

The results from several complex variables which we shall require may all be 
deduced from 

Remmert's Proper Mapping Theorem. A proper holomorphic mapping f: V ~  W 
takes analytic subvarieties Z c V onto analytic subvarities f(Z) ~ W. 

Suppose now that f :  V--~ W is a proper, surjective holomorphic mapping 
where both V and W are irreducible analytic varieties of the same dimension n. 
We will define the push forward mapping. 

(2.5) f , :  oq(v)+ oq(w), 

and similarly for meromorphic forms, going in the opposite direction from the 
usual pullback. 4 To do this, we note that f is generically finite in the sense that 
there is an analytic hypersurface D c W with inverse image D~=f-~(D) such that 
W* = W -  D and V* = V -  D s are both complex manifolds and f :  V* - ,  W* is a 
finite unramified covering mapping. For  sufficiently small open sets U c W*, the 
inverse image f -  1 (U) = U~ +- . -  + U~ decomposes into the sheet-number d disjoint 

4 The mapping f ,  is sometimes called the trace, but we shall reserve that name for the application 
o f f ,  to be zero-cycles given in the next section 
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open sets U~ such that f :  Uv-* U is an isomorphism with inverse s~. Given $~Q"(V), 
we define 

(2.6) f , ($ )=s*  ~+ . . .  +s* q/ 

in U. This definition is clearly invariant under the particular labeling of the sv, 
and thus defines f ,($) on W*. Locally on W*. 

s* ~k = h~(z) dz  1 A . . .  /X dz ,  

and from 

(h~ +-..  + ha)(hi + " "  + ha)<= C(Ihxl 2 + " "  + Ihal2) 

it follows that f,(O) satisfies the local L2-finiteness condition (2.2) around points 
of D. 5 Thus f,(O) is holomorphic on W, and in general we may define both 

f , :  12q(V) -* f2q(W) 

and 

f , :  Jttq(V) ---, Jr'q(IV) 

by symbolically writing (2.6) in the more suggestive form 

(2.7) ( f ,  ~k)(P)=O(P0+-..+0(Pa) 

which has the following meaning: For a general point P e W  the inverse image 
f - l ( p ) = ~  + ... +Pa where the P~ vary locally holomorphically with P, and O(Pd 
is the pullback of ~b under the mapping P -* P~. 

The simplest case is when the sheet number is 1. Then f*  and f ,  are inverse 
isomorphisms 

f* 
~ ( v )  ~ ~(w).  

f ,  

To apply this, we recall that a meromorphic mapping F: V -*  Wis given by a holo- 
morphic mapping F: V - Z - .  W defined outside a subvariety Z of V such that 
the closure of the graph of P is a subvariety G of V x W lying properly over V via 
the projection mapping 7rv: G -* V. We then define 

F* : (2q(W) --. Oq(V) 

by F* =(roy) , (nw)*. 
For example, suppose that V is compact and there is a surjective, meromorphic 

mapping 

f :  IP"-* V. 

Then f2q(V)=0 for q>0, since Oq(lP")=0 for q>0  and f * :  Oq(V)-* (2q(IP ") is, 
first of all, defined and secondly is injective. 

5 Even in case both V and W are n-dimensional complex manifolds and f :  V-+ W is a surjective 
holomorphic mapping, the L2-argument provides a nice way of showing that f ,  takes holomorphic 
forms into holomorphic forms. 

Note that f,(d(p)= df,(~) but that 

f , ( t / ^  0) :~ f,(q) Af,(O); 
this latter will be significant when we come to Abel's general theorem 
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To apply this remark, we suppose that V c  IP u is a projective algebraic variety 
and that the linear group GLm acts algebraically and transitively on a Zariski open 
set V* c V Then there is a surjective meromorphic mapping 

f :  IP "2---, V 

where GL,, is embedded as Zariski open set in IP "2 via its matrix entries and f 
is the orbit mapping. By what we just said, oq (v )=  0 for q > 0. 

A special case is when V=~(r ,  n+r) is the Grassmann variety of projective 
r-spaces in IP "+r on which GL,+,+I acts transitively in the usual manner. 

Perhaps more interestingly we may take 

V* = {set of nondegenerate curves of degree n in IP"} 

and V the Zariski closure of V* in the Chow variety of all curves of degree n in IP". 
Then every curve in V* is a rational normal curve, and GL,+ 1 acts algebraically 
and transitively on V*. Thus Oq(V)= 0 for q > 0. This remark will be applied in the 
second paper in this series. 

As another application of the push-forward mapping f . ,  we suppose that V is 
a compact, complex manifold on which a finite group G operates holomorphically. 
Then the quotient W= V/G, being locally the quotient of a polycylinder by a 
finite group, is an analytic variety. We claim that 

(2.8) O*(W) = O*(V) G 

are the G-invariant forms on V. 

Proof The mapping n: V--~ W is proper and surjective, and there is an obvious 
inclusion 

o*(w)  _ o*(v) G. 

If ~9 is a G-invariant form on V, then u* u,(~h)=JGI. ~h where IGI is the order of G, 
and thus the inclusion is equality. Q.E.D. 

For instance, take V= M a to be the Cartesian product M x ... x M of an n- 
d t~mes 

dimensional compact, complex manifold M and G the permutation group. The 
quotient Md/G = Mtd) is the d-fold symmetric product whose points we may think 
of as zero-cycles 

r=Pl+...  +P~ 

of degree d on M. When M is a Riemann surface, M (a) is smooth but not otherwise. 
The holomorphic forms on M (n) are just the symmetric ones on M ~. Since we may 
compute O*(M d) by Kiinneth, this tells us (2*(M(d)). In particular, there is an 
identification 

Q " ( M ) , . ~ n ( M d )  ~ 

d 
sending ~ ~ O"(M) to the G-invariant form ~, ~* ~ on M a where ~ :  M a ~ M is 

v = l  
projection onto the v-th factor. This gives the isomorphism 

(2.9) (P(M) ~- o"(m(d)), 
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which may be symbolically written as 

(2.10) q ' ( r )  = 4,(e0 + ..- + ~,(e~) 

where F = P~ + . . .  + P~ is a point of M ~a) written as a zero cycle. We shall generally 
write the isomorphism (2.9) as 

~ ---, 7', q~ --+ 4, 

etc., where (2.10) is the defining relation. 
A final variant of the push-forward mapping concerns the following situation: 

Suppose that M and N are compact, complex manifolds of the same dimension n 
and f :  M---, N is a proper, surjective holomorphic mapping, Denote by 3(~ the 
sheaf of holomorphic sections of the #-th power K u of the canonical line bundle 
K u  of M. Then o~{~} = f2~. When dim M > 2, it may happen that H~ f2") = 0 
but H~ J{'~) is very large as It--+ oo. In this case it may be desirable to extend 
the push-forward mapping f ,  to sections of Jg~, as will now be discussed. 

First, we remark that for a It-tuple differential ~ H ~  Jt'~t), then 

( 1 / ~ 1 )  "2 (~ ^ ~)'/ .  = ~, 

is a well-defined continuous density on M. Locally, f f=h(z)(dzl  ^ ... ^ dz,) ~' and 
~=[h(z)12/"dp (d# being Euclidean measure). Next, if ff is defined and holo- 
morphic outside a divisor D without most poles there, and if for each P~D and 
small neighborhood U of P the L2-estimate 

S ~ < o o  
U n M *  

is valid, then we may conclude that: 

q/ has a pole of  order at most ( # -  1) along D. 

Proof. It suffices to prove this around a simple point of D, and then we may choose 
coordinates (zl, ..., z,_ 1, w) such that D is given by w = 0. Effectively then we are 
reduced to the 1-variable situation of a holomorphic function h(z) defined for 
0 < Izl < 1, having a pole at z = 0, and satisfying 

S [h(z)[ 2/u dz d2 < oo. 
0<tzl<--1 

It then follows that h(z) has at most a pole of order I t - 1  at z = 0. Q.E.D. 

Now consider f :  M --~ N as above. Given q/~ H~ 0r we may define the 
the section f ,  q/of  :ffff outside the ramification divisor D of f by the formula 

(2.11) f , ( r  (P) = ~(P0 + "" + ~'(Pa) 

where f - l ( p ) = / ] 1  + . . .  + Pd- This is because higher differentials are contravariant 
tensors in the usual way. Using the estimate 

((~1 + " "  + ~ )  (~1 + " "  + ~d) =:"_-< C(1~112/~ +"" + I~d12/") 

we may conclude that (f , (q/)^ f,(~/))l/u has finite LZ-norm on N, and thus has a 
pole of  order at most (It - 1) along D. In summary, 
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(2.12) Given compact, complex manifolds M and N of the same dimension n and a 
proper surjective holomorphic mapping f:  M ~ N unramified outside a divisor D 
on N, the push-forward mapping 

f , :  H~ ~,~rfft) --~ n~ ~VNu ((# -- 1) D)) 

is well defined by the formula (2.11). 

As an illustration, suppose that f :  M --* lW is a branched covering with ramifi- 
cation divisor a hypersurface of degree d. Suppose, moreover, that the canonical 
bundle of M is ample, so that given distinct points Q1, Q2 . . . . .  Qd of M we may 
find # and ~kEH~ ~fffft) such that qJ(Q1)4:0, ~(Q2) . . . . .  ~(Qd-,). If 

f - ' ( P ) = Q ,  + "'" +Qa, 

then f,(~b) is a nonidentically zero section in the group H~ n, ~ffe.((/~- 1)D)). 
Using the standard notation (9(k) for the sheaf of sections of the line bundle 
[k- IP "-  1 ] on IP ~, Jfe- ~ (9( - n - 1) and consequently, 

~ e - ( ( #  - 1) D )  ~ -  ( 9 ( l ~ ( d  - n - 1) - d) .  

Since Hoop  ", C(k))= 0 if k < 0, we conclude that 

d>_n+2. 

This estimate places a lower bound on the size of the ramification divisor of f 
one which may be proved to be sharp. For example, in case Visa  compact  Riemann 
surface of genus g > 2 this gives that any covering mapping f :  V--, IP 1 branches at 
3 or more points, a well-known consequence of the Riemann-Hurwitz  formula. 

(c) The G.A.G.A. Principle and Abel's Theorem in General Form 

We wish to apply the above local analytic considerations to global algebraic 
varieties. Underlying this is the famous G.A.G.A. principle 6 which we shall 
briefly discuss. 

The basic results are that an analytic subvariety as defined locally by analytic 
equations in projective space is an algebraic variety defined globally by polynomial 
equations (Chow's theorem), and that a meromorphic  function on an algebraic 
variety is a rational function. We will sketch proofs of these two statements based 
on Remmert ' s  proper mapping theorem, and the topological fact that every 
linear r-plane meets an analytic subvariety V, c I P  n+' the same number of times 
(counting multiplicities), provided of course that the intersection is discrete. Our 
reasons for doing this are that these theorems are not so complicated to prove as 
commonly believed, and, more importantly, that due to the partly expository 
nature of this paper it seems a good idea to keep our perspective by properly 
emphasizing the mechanics of the transition from local analytic to global algebraic 
considerations. 

6 So named after the paper by J. P. Serre, G6om6trie alg6brique et g6ometrie analytiqu6, Ann. 
Inst. Fourier, Vol. 6 (1955-56), pp. 1-42 
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Suppose then that V.cIP "+r is an analytic variety. The set of r - 2  planes in 
IP "+' which meet V forms, in the obvious way, an analytic subvariety W of the 
product V x ~ (r - 2, n + r). The fiber of the projection W---) V is the Grassmannian 
G(r-2, n+r) of ( r -2)-planes through the origin in C "+r and has dimension 
(r - 2) (n + 2). There is a tautological proper mapping f :  W ~ I P  "+", and an easy 
count shows that the image is an analytic subvariety of dimension less than n + r 
(here we are using Remmert's theorem). Consequently, a general r - 2  plane IP ' -z  
fails to meet V and the standard linear projection 

V c I P , + ~ _ I p , -  2 

t l  
rc(V)cIP T M  

is a proper mapping onto an analytic hypersurface in 11 )"+1. In fact, it is easy to 
see that rc is bimeromorphic. To find polynomial equations which define VcIP "+~ 
it will suffice to do this for rc(V)=IP "+1 and vary the center of projection IP r-2. 

Assuming now that V c I P  "+1 is a hypersurface, choose a general point 
PeIP  "+1 - V  and go to the projection 

V =Ipn+l- {p} 

11 
IP" = I P  ~ 

given by intersecting the line PQ (QslP ~+1 -{P})  with a fixed IP". Since V meets 
each line the same number d of times, this represents V as a d-sheeted branched 
covering of IP". Choosing affine coordinates (x,y)=(xl, . . . ,x, ,y) such that 
r~(x,y)=x, for each x e l l Y c l P  ~ the line P ~  meets V in points y~(x), ... ,yd(x). 

\ Y 

x \ ~ '  

The symmetric functions of the y~(x) are single-valued and holomorphic outside 
the branch locus and are locally bounded. Hence they are holomorphic for all x 
by the Riemann extension theorem. In particular, 

d 

f(x, y)= I-I (Y-  yv(x)) 
v = l  

is a polynomial in y with coefficients a,(x) holomorphic functions of x, and 
f (x ,  y) = 0 on V As ]xJ~ oc, it is easy to see that max lyv(x)l = 0(Ix[) (c.f. the above 
picture) so that t(ru(x)l =0(Ix[) n) and f (x,  y) is a polynomial in all variables. It 
follows that V is algebraic. 

Next, suppose that h is a meromorphic function on IP" with homogeneous 
coordinates X = [Xo . . . . .  3(.] corresponding to the projection n: C "+x - {0} ~ IP". 
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The polar set of h is, by Chow's theorem, an algebraic subvariety of IP", which we 
take to have homogeneous equation Q(X)=0 of degree d. Then P(X)= Q(X) h(X) 
is a holomorphic function on ~ , + 1  {0}, and hence by Hartog's theorem extends 
to an entire analytic function. Since P( 2 X) = 2a P( X), it follows that P(X) is a 
homogeneous polynomial of degree d, and h (X) = P(X)/Q(X) is a rational function. 
If we denote by ~X#(V) and ~ ( V )  the fields of rational and meromorphic functions 
on an algebraic variety V, then we have proved that JF(IP")= J/(IP"). 

We now prove the equality in general. For this we consider the finite branched 
covering n: V ~  IP" given by n(x, y ) = x  as above. Given a meromorphic function h 
on V, any symmetric polynomial a(h(x, yl(x) . . . . .  h(x, ya(x)) is a meromorphic, 
and hence rational, function on IP". It follows that the field extension 

[~0P");  ~(V)] _<_ d 

is a finite algebraic extension of degree < d. On the other hand, 

[XOP"); ~ ( V ) ]  _>_ d 

since we may find a polynomial p(x, y) taking distinct values at a suitable set of 
distinct points (x, Yl (x)) . . . . .  (x, yd(X)). Since 3f(V) _ ~ ( V )  we have equality, and 
this completes our discussion of the G.A.G.A. principle. 

Easy consequences of what we have just proved are: On a projective algebraic 
variety every meromorphic differential form is rational; a meromorphic mapping 
between two such varieties is rational, etc. 

Now we come to a general form of Abel's theorem. This deals with an algebraic 
family {F(t)}~r of zero cycles on a projective variety V More precisely, we should 
be given in addition to V a parameter variety T and subvariety I c T x V such that 
for a general point t e T the intersection 

1. (It} • V)= {t} x r(t) 

where F(t)=P~(t)+'..+Pd(t) is a zero cycle on V. Equivalently, the projection 
1--, T should be surjective and generically finite. This definition is the same as 
giving a rational mapping 

(2.13) f:  T-* V (a) 

into the d-fold symmetric p r o d u c t -  here 

f( t)  = r(t) 

for a general t~ T. Denoting by ;~r and nv the projections of I onto T and V, here 
is our main 

Definition. Given a rational q-form ~0 on V, the trace Try(O) is the rational q-form 
on Tdefined by 

Trz(0) = (n r ) ,  (roy)* (~'). 

This makes sense provided we are not in the degenerate case where ~v(/) lies entirely 
in t he  polar locus of ~ , - th is  will be excluded. Observe that the local analytic 
considerations of Sections IIa  and b and the preceding G.A.G.A. discussion are 
the ingredients which insure that the definition has meaning. 
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If our family of zero cycles is given by (2.13), then the trace 

(2.14) Tr,(~) =f*(7 ' )  

where ~ is the rational q-form on V ~d) given by (2.10). The most suggestive notation 
is writing the zero cycle as 

F(t) = Pl(t) +. . .  + P~(t) 

and then according to (2.7) 

(2.15) Trl(qJ) = ~,(P~(t)) + . . .  + ~O(Pd(t)). 

This is the formula which most clearly exhibits the trace and which ties in with the 
classical Abel theorem, as will now be explained. 

Return to the situation in Section Ia  of an algebraic curve C having affine 
equation f (x ,  y) =0 and on which we are given an abelian integral 

u =S r(x, y) dx. 

Suppose that D~ is a family of curves given by O(x, y)=0 and set 

n,. C=Z e (t) 
v 

where P~(t)=(x~(t), y~(t)). The abelian sum 

P(t) 

S 
v 

has derivatives 

c3x~ 
~ t i = ~  r(x~(t), y~(t)) Oti , 

so that according to (2.15): 

(2.16) The total differential 

du(t) =Trx(ff) 

is the trace of ~ relative to the family of zero cycles Dr. C. 

In particular, Abel's theorem (1.6) follows from our local analytic discussions and 
the G.A.G.A. principle. We may say that the existence of the trace mapping gives 
a general form of Abel's theorem, one which will be interesting according to the 
applications which can be found. This brings us to our second main 

Definition. On a projective variety V let ~k be a rational differential form and 
{F(t)},~r an algebraic family of zero cycles. Then ~k is said to be of the first kind with 
respect to this family if Trt(~9) is holomorphic T. 

This will certainly be the case if ~O is holomorphic on V, but not conversely. 
If ~k is a q-form of the first kind relative to the family {F(t)},~r and if f~(T)=0,  
then 

Tr1(~k) = O. 
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When written out explicitly, this condition 

(2.17) ~9(P~(t))+--.+~b(Pd(t))--0 

has the appearance of a general addition theorem, and we shall explain this in the 
coming sections. 

(d )  Holomorphic Differentials and Rational Equivalence 

We want to now discuss the relation between the Trt(~k)=0 condition and the 
rational equivalence of points on a smooth projective algebraic variety V. 

In this section it is convenient to define a zero cycle to be a formal finite sum 
F = Y' n~ P~ of points on V with arbitrary integer coefficients. An effective zero cycle 

v 

is a zero cycle F with nonnegative coefficients. As usual, the degree of F is 

deg F = ~ n~. 
v 

Two effective zero cycles F and F' of the same degree are defined to be rationally 
equivalent in the strict sense, written F=_F ', if there is a rational mapping 

(2.18) f :  IP m--, V (a) 

such that f ( t ) =  F and f ( t ' )=  F'. We then say that two zero cycles F and F'  are 
rationally equivalent if there is a zero cycle F" such that F + F" and F' + F" are 
both effective and F + F" = F'  + F". This is an equivalence relation, and the group 
of all zero cycles modulo equivalence constitutes the Chow group C(V). 

The first question is whether or not C(V) is finite dimensional. Intuitively, this 
should mean that for large d an effective zero cycle F~ V (a) should depend on only 
a finite number of parameters modulo rational equivalence. This in turn will be 
the case when the codimension of maximal images of rational maps (2.18) through a 
general point F~ V (a) remains bounded as d - . o o .  The way in which Abel's theorem 
comes into the picture is via the observation: 

(2.19) For a rational mapping (2.18) and ~k~f2q(V), 

f *  7t=_O. 

This is equivalent to saying that 

Y, q,(P~(t)) = 0 
V 

for a rational family F(t)= ~ P~(t)(t ~IP ~) of zero cycles on V. 
v 

It is convenient to rephrase (2.19) in the language of differential systems. 
Recall that a differential system Z on a variety W is given by a collection { 71} of 
holomorphic differential forms. An integral variety is a subvariety Z c W such 
that the restriction ~ IZ  = 0 for all 7 j ~ Z. The condition (2.19) may be re-interpreted 
by the statement: 

(2.20) The image f(IPm)c V ~d) is an integral variety for the differential system 
O*(V(~). 
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Because of this it is interesting to estimate the maximal dimensions of local integral 
varieties for the differential system f2*(V~d)). 

We first consider the familiar case of curves from this point of view. By what 
was said in Section IIb (c.f. (2.9)) the differential system t2*(V td)) is generated by 
Qm(vtd)), and, moreover, 

t? 1 (V) - ~1 ( V td~) 

under the mapping 

0 ~ t u  

defined by the relation (c.f. (2.10)) 

~ ( r )  = O(P0 + . . .  + O(P~) 

where F=P~+ ..-+Pd is a variable point in V {~). The forms ~P are all closed, and 
at a general point F~ V Cd) the rank of the differential system f2~(V td~) is equal to 
the genus n of V. Consequently, by the Frobenius theorem the differential system 
has passing through a general point F e  V ~d) local integral varieties of codimension 
n. This again suggests that C(V) should have finite dimension n. Note that this 
argument is in a certain sense parallel to the discussion of inversion for plane 
curves given in Section I c. 

To complete the argument in this context, instead of counting constants as 
was done previously we use Riemann's inequality 

I(F) > d -  n 

where I(F) + 1 is the dimension of the vector space of meromorphic functions ~o 
on V whose divisor (q~) > - F. It follows that through each point FE V ~d~ there is a 
IP ~tr), and so dim C(V)<n. On the other hand, we have dim C(V)>n by the 
preceding remark based on Abel's theorem. Continuing on with this reasoning, 
one may easily prove that the Jacobian variety C(V) is a n-dimensional group 
variety. 

We now come to surfaces and Mumford's theorem, which is based on the 
following 

Linear Algebra Lemma. Let E be a complex vector space of dimension 2n and 
�9 EA 2 E* a nondegenerate 2-form. If  F c E  is a linear subspace with ~ I F - 0 ,  then 
dim F__<n. 

Proof. Let fl . . . .  , fk be a basis for F and complete it to a basis (fl  . . . . .  fk; el . . . . .  
e2 n - k )  for E. Then, setting ~n= ~ A ... ^ 4~ (n times) 

( O ' , f l ^  . . .  AfkAe 1A " '"  ^ e:n_k) 4:0. 

On the other hand, since (~ ,  f~ n f i )  = 0  for all i, it is clear that the right-hand side 
must be zero if k_>_ n + 1. Q.E.D. 

If now V is a smooth surface and 0~0e f22(V) ,  then at a general point F e  V (") 
the 2-form ~v given by (2.10) is nondegenerate. Indeed, if zv, wv are local coordinates 
centered around P~ such that 0=hv  dz, ^ dw~, then upon assuming that P~ are 
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distinct 

d 

~ =  ~ h~dz~Adwv 
"r 

is nondegenerate  provided all hv(O ) 4:0. Applying the linear algebra lemma gives 

Mumford ' s  Theorem. I f  V is an algebraic surface with p g ( V ) = d i m  O2(V)@0, then 
the local integral varieties of the differential system t2* (V a) through a general point 
F~V ~a) have dimension<=d. In particular, if the mapping (2.18) is nondegenerate 
and has image passing through a general point Fe V td), then m <=d. 7 

This implies that d im C ( V ) =  + oo. Roi tman  has refined Mumford ' s  theorem 
by proving:  8 

I f  pg(V)4:0, then for d>=d o and F a generic point of V ~a~ the orbit through F 
of cycles rationally equivalent to F has dimension zero. 

Here, generic means outside a countable union of  proper  subvarieties of V~a); in 
any case, F is usually isolated in its linear equivalence class, and, consequently 
C(V) is as infinite dimensional  as possible. 

N o w  this series of papers is devoted to finding higher codimensional  situations 
where Abel-type condit ions such as (2.17) can be inverted. As noted above, this 
is classically the case for curves, and we now wish to observe that :  

I f  V is a surface with pg(V)~e0 then the estimates provided by Mumford's 
theorem cannot in general be improved. 

To explain precisely what  this means, it is convenient  to use some notat ions  
and results from surface theory. 9 If L ~ V is a line bundle, then I L[ denotes the 
complete linear system IP(H~ (9(L))) of  effective curves C with [C]~-L .  The 
intersection number of line bundles L a n d / I  is defined by 

L. /1=c,(L). cl(E ) [V]. 

If L is positive so that Hq(V, (9(/~))=0 for q > l  and P>/~0, the Riemann-Roch 
formula is 

(2.21) d im I/Y[=#2 L2L 
L .  K 

- - - P - ~ - - + P g - - q  (#>--#o) 

where q=hl((9) is the irregularity and K is the canonical bundle. 
Suppose now that L is positive and C, C'6L/~[ have no c o m m o n  componen t  

and intersect at distinct points where all 0 (P0 4:0 for some 0 e 0 2 (V). For  large p 

7 We are not claiming to have given a complete demonstration that the Chow group C(V) is infinite- 
dimensional; Mumford's proof of this requires one additional step dealing with "'chains" of IP~'s 
connecting two effective zero cycles, and uses the relation Y2*(W x IPt)m O*(W) rather than (2.10) 
8 The references to Mumford's and Roitman's papers were given in the introduction. A convenient 
overall discussion of cycles is given in R. Hartshorne, Equivalence relations on algebraic cycles and 
subvarieties of small codimension, Proc. Sym. Pure Math., Vol. XXIX, Amer. Math. Soc. (1975), 
pp. 129-165 
9 A convenient reference for what we shall need about surfaces is E. Bombieri and D. Husemaller, 
Classification and embeddings of surfaces, Proc. Syrup. Pure Math., Vol. XXIX, Amer. Math. Soc. 
(1975), pp. 329-421 
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this will be generally true. Then 

F = C- C' ~ V td) 

where the degree 

(2.22) d=p2  L.  L. 

By Mumford's theorem this d is an upper bound on the dimension of projective 
spaces in Vta) passing rationally through F. A lower bound may be obtained from 
the Riemann-Roch formula. Namely, we may consider F as the base locus of the 
pencil I C + t  C'[ in [/-ql. The set of all such pencils is the Grassmannian of lines in 
the projective space IB[, and has dimension 6 = 2  dim I B [ - 2 ,  which, by (2.21), is 
equal to 

(2.23) 3 = p 2 L . L - p L . K + 2 p g - 2 q - 2 .  

Comparing (2.22) and (2.23) we see that 

d ~ 6  
as p--* 09, so that Mumford's estimate is best possible in this asymptotic sense. 

From the point of view of the Riemann-Roch and duality theorems the 
simplest surfaces are those for which the canonical bundle K = 0 .  If pg(V)#0, 
then such a V is either a K3 or abelian surface. For  these we shall now show that 
Mumford's estimate is sharp. 

In the K3 case, pg= l  and q = 0  so that d=6  for any positive line bundle. 
The abelian surface is slightly more intricate. The first step is to derive a linear 

algebra lemma relevant to the situation. Suppose then that F is a complex vector 
space on which we have a nondegenerate 2-form f2. We may choose linear co- 
ordinates (z 1 . . . . .  z,; wl . . . . .  w,) such that 

n 

I2 = ~ dz i ̂  dw i 

where d i m F = 2 n .  A quadratic form Q and linear automorphism J:  F--~F are 
defined by having respective matrices 

Q= (~ ~n) J= (-OIn ~) 
Then, for all vectors e, f ~ F  

(2.24) O(e , f )=O(e ,  J f ) .  

Using the isomorphism of F with its dual F* given by Q we may think of J as 
acting on F*. 

Second Linear Algebra Lemma. Suppose that we are given a subspace E = F and 
linear form ) ,eF* such that the conditions 

<2, E> = 0  
(2.25) <J2, E > = 0  

~ n - l ^ 2 ^ J 2 # 0  (n=d im F) 

are satisfied. Then dim E < n -  1. 
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Proof (due to Joe Harris). On the subspace F ' c F  defined by the equations 

(2, f ) = ( J 2 ,  f } = O  

the form f2 is nondegenerate by the third condition in (2.25). Since E c  F'  and dim 
F ' =  2 n - 2  the lemma follows from the previous linear algebra lemma. Q.E.D. 

Now suppose V= ~2/A is an abelian surface where ~z has linear coordinates 
(z, w). The differentials 

oo= ~ dz u, 
g 

09' --- ~ dw v, 
v 

f2 = ~ dz. /x dw. 

generate O*(Vt"))-here (z 1, w I . . . .  , z., w.) are coordinates on the cartesian 
product V". Then ~o' =J~o  and 

(i t,z ~e'~n-- 1 A (D A (D'  = dzx/~dWl/~.. . /~dz~/~dw~/x.. .Adz, Adw . A dz~/xdw~) 
\ ~ = 1  / fl, Y 

:4:0. 

F rom the second linear algebra lemma we deduce: 

I f  there is a IP" sitting rationally through a point F = P ~ + . . .  + P,~ V C") where 
Pu # P~ for p4= v, then m < n -  1. 

We now prove that this estimate is sharp. Let L - *  V be a positive line bundle 
and C, C'eLL] curves meeting at d = L .  L distinct points. According to (2.23) if 
we vary the pencil [C+t C'] in ]L] we obtain a IP n-z passing through F =  C.  C'. 
Now, to account for the remaining parameter  we set E o = L O L and let a o e H ~ (E) 
correspond to F. Since 

dim H a (Horn(L, L)) = dim H1 ((fi) = 2 

we may obtain a IP I of inequivalent extensions 

O--~ L---~ E~--~ L--~ O. 

The section % may be perturbed to tr~eH~ due to H~(Eo)=H~(L| 
In this way we find a IW -~ passing rationally through F. In summary we have 
proved: 

(2.26) I f  V is either a K3 or abelian surface, L ~ V a positive line bundle and 
C, C' elLI curves meeting at d= L.  L distinct points, then there is a IP r constituting 
an integral variety of I2*(V ~a~) of maximal dimension passing through F= C. C'. 

In these cases the Abel condition (2.17) is invertible. 
We also note whereas in codimension 1 -  say, points on a c u r v e -  the integral 

varieties of the differential system f2*(V re)) are linear and therefore may be ex- 
pected to be closed, the situation in codimension = 2 is basically nonlinear and 
the general integral variety will not be closed. 
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In fact, suppose that we return to the K3 case and look at zero-cycles 
d 

F = ~ P~ ~ Vta) of degree d near a point F o where all P~ are distinct. We may choose 
v=l  

coordinates (zt, w 1 . . . . .  z a, wa) around F 0 such that the 2-form Q on V tn) is 

d 
f2 = ~ dz v ̂  dw~. 

The n-planes A on which 12 is zero have the following character: A general such A 
will have a basis 

ev= + ~ A~u ~w~, 

and the condition (f2, A ) =  0 is equivalent to 

Avu= Au~. 

Thus the local integral varieties of f2 having maximal dimension n and passing 
n ( n + l )  

through Fo form an ~ .dimensional subvariety of the Grassmannian G(n, 2n), 

whose dimension is n 2. What (2.20) implies is that if F o is a complete intersection, 
then exactly one of these local integral varieties will consist of complete inter- 
sections. 

On the basis of this together with Bloch's results (footnote 1) and the discussion 
at the end of Section IIIa below, we might guess the following: If V is a regular 
surface with p~(V):~O and Fo is a 0-cycle of sufficiently large degree n, then the 
only way in which a nontrivial rational variation of Fo can occur is by having 
Fo = F ' +  F" where F' is a complete intersection and the variation is by moving 
/" as a complete intersection. Moreover, the maximal integral varieties of 
12*(V ~m)) passing through a complete intersection consist entirely of complete 
intersections xo. 

(e)  Abel's Theorem for Linear Spaces and Statement of a Converse 

We consider a projective variety V, c I P  TM. V may be singular or reducible, but 
we do assume that every component of V has the same dimension n and multi- 
plicity 1. As family of zero cycles we take the intersections 

Fa=A. V 

of V with linear r-planes A ~ ( r ,  n+r). A general A meets V in a finite number 
d = degree of V distinct points, so that the incidence correspondence 

I c E ( r ,  n + r ) x  V 

defined by 

I =  {(A, P): PeA} 

10 See Notes Added in Proof 
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maps in a finite surjective manner onto the Grassmannian. The following example 
illustrates some of the possibilities for the special fibers of rr: I--*tl3(r,n+r): 

Suppose that V=IP 3 is a smooth quadric surface. 

~ v  

/ 
/ 

/ 
/ 

A general line L~II3(I, 3) meets V in two distinct points; we write L. V=P+Q 
where P:#Q. On a hypersurface V*~II3(1, 3) the line L is tangent to V, so that 
L.  V= 2P. Finally, there is (reducible) curve C of lines L lying in the quadric 
surface; for these lines the fiber re-1 (L)= L is positive-dimensional. Summarizing: 

for L ~ ( 1 ,  3 ) -  V*, rc-I(L)=P+Q,P+Q 
for L e V * - C ,  rc - l (L)=2P 
for L~C, rc-l(L)=L. 

We next discuss the conditions that a rational n-form ~k on V should be of 
the first kind with respect to this family {FA}A~C,,,+,) of zero cycles. 

In case V is nonsingular, ~k is of the first kind<=~b~f2n(V) is holomorphic on V. 

Proof Suppose that ~k is meromorphic with polar divisor D, and choose a linear 
space A. such that 

A . - V = P + Q I + - - - + Q a _  1 

where Pr  and the QICV-D.  (Note: If V were singular and D ~  ~i,g, then this 
is not possible.) For A close toA.,A �9 V=P+Q~+ ... +Qn-~ where P is close to P 
and Qi is close to Qi. Since the trace 

Trt(~b) (A) = $(P) + $(Q0 + ' "  + ~b (Qa- 1), 

it is clear that Trt($) has a singularity at the point AEII3(r, n+r). Q.E.D. 

Now suppose that V, c I P  "+1 is a hypersurface having equation 

f(x, y) =0  

in affine coordinates (x, y) = (xl . . . . .  x,, y). We write 

p(x, y) dxl ix... A dx, ~,= 
Of - - ( x ,  y) 
dy 

and will prove that: 

(2.27) ~ is of the first kind with respect to the family of lines in IW+l,*:~p(x, y) is 
a polynomial of degree at most d - n -  2. 
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Proof A Zariski open set in ~ (1, n + 1) consists of lines L(a, b) having equations 

xl=ax y +bl 
(2.28) : 

x.=a,, y+b ,  

where (a, b)=(a,  . . . . .  a.;  bl . . . . .  b,) give local coordinates on the Grassmannian. 
We may assume that for l al, I bl< e the intersection 

L(a, b) . V= PI (a, b) + ... + Pd(a, b) 

where the points P~(a, b)=(x,(a ,  b), yv(a, b)) are finite, vary holomorphically with 
(a, b), and have distinct y-coordinates yv(a, b). The incidence correspondence is 
defined by 

Xi = ai Y + bi ( i  = 1 . . . .  , n) 
{2.29) f (x ,  y) =0 ,  

and for any function q (x, y) we denote by 

Q(y) =q(al y + bx, ... , a, y + b,, y) 

the restriction of Q to I. We will now prove the beautiful formula 

. . . . .  f ~  y~AI p(yv) ) 
(2.30) ~r1(q ' )=L+~L . . . .  ~ daaAdbAo 

A { ~ r ( Y O )  

where A runs over index subsets A =(i~, . . . ,  ik) of( l  . . . . .  n), A c is the complementary 
index set, and IAl=k is the number of elements in A. 

Assuming (2.30) for a moment, we may first deduce that the rational function 
p(x, y) is necessarily a polynomial, and then by the Lagrange interpolation formula 
(1.10), 

Y y!AI P(Y3 )'ylat ~ e(y)~ (2.31) ~ F ~  - c ons t an t  term in ( F(y) J 

which is zero ~ deg P + n + 2 < deg F, thereby proving the assertion (2.27). 
Now to the proof of (2.30). A convenient remark is that, for any index i, 

(2.33) dxl ^ "'" Adx.  = ( _  l )n_ i+l  dx 1A "'" A ~ X / A  ""  Adx ,  Ady 

Of (x, y) Y) 

on the hypersurface V. This is because on V 

o f  o f  
O=df = ~.,-#-- dxi +w-- dy, 

i GXi  c y  

so that 

dxi dy 
Of/Oy = Of--/~xi modulo (dx l , . . . ,  "~xi . . . . .  dx,). 
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Differentiating the equations (2.29) of the incidence correspondence we obtain 

dx~ = a i dy + y da i + dbi 

ay Of Oy 
(2.33) ~ @ [ a j - - + 6 ~ y ~ - t  = 0  \ #a~ / ~?y Oat 

In these expressions we are considering just one of the points 

p(a, b) --(x(a, b), y(a, b)) 
of intersection of the line L(a, b) with V and differentiating x and y as functions 
of a and b. These equations may be rewritten as 

d x i -  y dal + dbi modulo dy 

t?y y(~f/ax~) 
(2.34) ~?a i F'(y) 

ay af /dx i 
c?bi f '(y) 

, a f  U 
where F(y) = f (a l  y + bl . . . . .  a. y + b., y) and F (y) = ~ a t ~ +~vv is the y-derivative 
of F(y). From the last two equations in (2.34) J J Y 

dy = - F'(y~-) ~ (y da, + dbi) 

so that 

dxl A. . .  Adx ,_ l  Ady  

 ,da, ,(Z fl  ,do,+dbD , 
-Of /Ox,  

- - -  {(yda~ +dbO/x ... A(yda,+db,)}  
F'(y) 

_ -Of/Ox~F,(y) {~+_ylal da a/x dbAo}. 

Combining this with (2.32) in the case i=  n yields the formula (2.30). Q.E.D. 

It may be noted that the above computation is local around the points of inter- 
section of the line L(a, b) with V 

The principal new result of this paper is a converse to Abel's theorem for 
differentials of the first kind relative to the family of r-planes in IP TM. 

Main Theorem. Let A o be a f ixed r-plane in IP TM. Suppose we are given distinct 
points P~s Ao and in a neighborhood Uv of P~ a piece of n-dimensional analytic variety 
V, meeting Ao transversely at P~. Suppose, moreover, that on each V~ we are given a 
holomorphic n-form Lkv~O. For r-planes A in a small neighborhood U of Ao in 
tl3(r, n + r) we form the trace 

Tr,(O) (A) = ~2 O~(A- V~), 
,o 
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and assume that Tr1(~b) =- 0. Then there is an n-dimensional algebraic variety Vc IP T M  

and rational n-form ~b on V such that tp is of thefirst kind with respect to the family 
oft-planes in IP "+~, and such that each 

v~cv,, 

~,lV~= q,v. 

I lL  Residues and Abel's Theorem 

(a ) Local Properties of Residues; the Residue Theorem 

We shall first discuss local proper t ies  of point  residues. Comple te  proofs of the 
s ta tements  we shall make  are scattered th roughout  the li terature and are collected 
in Chap te r  V of the for thcoming book,  Analytic algebraic geometry, by Joe Harr is  
and the au thor  to be published by Wiley. 

Let  U a connected open ne ighborhood  of the origin in ~", e.g., the ball 

{ z e ~ " :  I[z[I <~}, and f l  . . . . .  f,e(9(O) 

ho lomorph ic  functions defined in a ne ighborhood  of the closure of  U. We assume 
that  the equat ions  

f~(z) . . . . .  L ( z ) = 0  

have the origin as isolated c o m m o n  zero. Equivalently, if Di=(f~ ) is the divisor 
o f f ,  then the set-theoretic intersection 

D 1 c~... c~D, = {0}. 

We use the no ta t ions  U~ = U - D  i, D=Dx +. . .  +D,,  and U* = U -  {0} = Q) U~. 
/ = 1  

In V we consider  m e r o m o r p h i c  n-forms having polar  divisor D. Any  such ~o 
may  be writ ten as 

g(z) dz~ ^ . . .  ^ dz, 
o~ = g6(9(0), 

f1(z) . . . f , (z)  ' 

and a l though co has polar  set D it is pret ty  clear that  the origin is, in some sense, 
the point  of  most  intense singularity. We define the cor responding  residue (or 
point residue) 

(3.1) Rest0 ~ o )=  ~ o) 

where the pa th  of  in tegra t ion  is the real n-cycle 

r =  {Ifll . . . . .  i l l  ;~} .  ~ 

l l  This residue is clearly a variant of the Cauchy integral in several variables. It may be defined 
purely algebraically-this essentially amounts to the Grothendieck residue symbol-and perhaps its 
most interesting property is the special case of Grothendieck's duality theorem stated below as property 
(ix) of the residue. 

The earliest reference I can lind is F. Severi, Funzoni analitiche e forme differenziali, Atti del 
Quarto Congresso delrUnione Matematica Italiana, "r I, ppg. 125-140, Casa Perrella Roma (1953) 
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As coordinate functions on an open dense set of F we may take the arguments 
arg fi, and then F is oriented by 

d(argfl)  A.. .  A d(argf,)  > O. 

Here are some properties of the residue. 

(i) Resto ~ o9 depends in an alternating fashion on the f~ and linearly on g. 
Moreover, the residue is zero in case g is in the ideal I I generated by the ffs. 

dz 1 A . . .  /x dz ,  
Proof  If, say, g =fa ,  we let A = {ILl<  6, I fzl . . . . .  [f,I = 6}. Then co 

fz (z) ... f.(z) 
is holomorphic in a neighborhood of the (n + 1)-chain A, and by Stokes' theorem 

o=Iao9= Io9=Io9. Q.E.D. 
A ~3A F 

(ii) Similarly, by Stokes' theorem, the residue depends only on the homology 
class of F in H.(Ulc~.. .c~U,, Z) and de Rham cohomology class of co in 

Hgn(Ul ~ . . . n V , ) .  lz 

(iii) If we consider { Ui} as a covering U of U*, then co E f2"(U1 n . . -  c~ U,) defines 
a (~ech cochain in C"- I (U,  f2") and hence a cohomology class 

[o9] ~H"-1 (U *, (2"). 

Under the Dolbeuult isomorphism 

H"-~(U*,  f2")~_ H-~,"-X( U *) 

[o9] is represented by a C ~~ ~-closed form ~/o, of type (n, n - 1) defined in U*. Since 
d=O on forms of type (n, q), the linear functional 

IIzll =~ 

is well defined on H-~'"-I(U*), and 

(3.2) Res~o/og= ~ q,o. 
IIzll =E 

The explicit formula for r/,o is 

C. ~ ( - 1 )  ' -a  g(z)dff~ A ... Adf~ A ... Ad-ff, Adz~ A ... A d z .  
(3.3) qo,= i 

II/(z)ll 2" 

where f ( z ) =  (.1"1 (z) . . . . .  f ,(z)) and C, is a constant depending only on n. 
Passing to Dolbeault  cohomology makes precise the sense in which 09 has the 

origin as point singularity, and converts the original n-dimensional path of integra- 
tion into one of real dimension 2 n - 1 .  This, in turn, makes easy the proof of 
the residue theorem, which we discuss next. 

(iv) Let M be a connected complex manifold embedded as a relatively compact  
open set with smooth boundary in a complex manifold M'. The case where M = M '  

12 H*R(M) den~tes the de Rham c~h~m~l~gy {c~sed f~rms}/{exact f~rms} ~n a manif~d M. Simi~ar~y, 
H~(M) denotes the Dolbeault cohomology {~-closed forms}/{O-exact forms} on a complex manifold M 
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is compact is allowed. Suppose that DI . . . . .  D . (n=d im M) are divisors on M' 
meeting at a finite number of points interior to M. 

D~ D 2 

M' 

Set D=D 1 + ... +D, and suppose that coef2"(M', D) is a meromorphic n-form on 
M' having polar divisor D)3 This defines a class 

[col eH"-I(U, Q") 

where U={U1 . . . . .  U,} is the covering of M*=M-(Dln . . . c~D, )  by the open 
sets Ui = M -  MnD~. If q,~ is any 0-closed form of type (n, n -  I) on M* representing 
[co] under the Dolbeault isomorphism H"-l(M*, fP)= H~' "-~(M*), then we have 
the 

Residue Theorem. If DIn. . .  riD, = ~ P~, then 
V 

(3.4) ~ Resev co = I t/,o" 
Pv OM 

Proof Let Bv(e) be a ball of small radius e around P~. Then, by (iii), 

Respv co = S qo,- 
OB~(e) 

Applying Stokes' theorem to M -  U B~(e) gives 
V 

I t/,o= Z ~ r/., (sinced~/~,=O) 
OM v OBv(O 

= E Respv co 
v 

by what we just said. Q.E.D. 

(v) In the nondegenerate case where the Jacobian J:(O)=det (~ (0 ) )#=0 ,  
, j - -  

g(O) 
(3.5) Res~o~ co=Jy(0)" 

This follows easily by applying the change of variables w=f(z )  to convert the 
residue integral into a standard Cauchy integral. 

We observe that (3.2), (3.3), and (3.5) combine to yield the Bochner-Martinelli 
formula. 

We also remark that Jr(O)4= 0 is equivalent to saying that the D i are nonsingular 
and meet transversely at the origin. 

13 We are using the notation t2q(M, D) = H ~  O~([D])) for the meromorphic forms having polar 
divisor D 
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(vi) One of the most important applications of the residue theorem is to the 
method of continuity: If we are given functions f (z ,  t), g(z, t) which are holomorphic 
in z~O, continuous in t for Itl<~, and if the f~(z, 0) have finitely many isolated 
zeros in the interior of U - w h i c h  is equivalent to ~ If,(z, 0)12> C > 0  on the 

i 
boundary of U - t h e n  the same is true of the fi(z, t) for small t. Setting Di(t ) = divisor 
of f~(z, t), then the total number of points (counting multiplicities) in D1 (t) c~.-. nD,(t) 
is constant (c.f. (vii) below). If we write set-theoretically 

Dl(t)~...  r~D.(t) = ~ P~(t) 
v 

and set 

t g(z,t) dz i A'." Adz,  
)= ZE,  .j.iz-,t5 ' 

then the method of continuity states: 

The sum of the residues 

~, Reset.)~o(t) 
v 

is a continuous function of t. 

Proof. Set U*(t)= U-(Dl(t)c~.. .nD,(t)) and consider o(t)  as a class in 

n "-'(v*(t), o")__n~,"-i(v*(t)). 

If rho(t ) is the Dolbeault representative (3.3) of co(t), then ~/~,(t) depends continuously 
on t, and by the residue theorem the same is true of 

~, Resev m o ( t ) =  ~ q,o(t). Q.E.D. 
v OU 

In particular, given fl  . . . . .  f .~O(U) with the origin as isolated common zero, 
we may find continuous perturbations f/(z, t) of f/(z) such that the divisors Di(t ) 
are smooth and meet transversely for t 4: O. Then the residue 

Res~o} o = lira {E Resl, ,, co(t)} 
v 

is the limit of nondegenerate residues each of which may be "evaluated" by (3.5). 

(vii) As an application of the method of continuity, we define the intersection 
number 

(D1 . . . .  , D.)~o~ = Res~o} k r 

where 

k d f ,  

is the pull-back of the Cauchy kernel dwl dw, A... A . It is easy to see that the 
W 1 W n 

intersection number is a positive integer. If we use the notation 

(Ol, ' Z (  ' .... D,)v= D1, ., D',) �9 . p~ ,  
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for the total intersection number of divisors D'~ meeting at isolated points P~'~ U, 
then since a continuous integer-valued function is constant, the intersection 
number 

(D1 . . . . .  On)CO} =(O1(0 . . . . .  O.(t))u 

is simply the number of points in which generic perturbations of the Di's will 
intersect. 

(viii) Another important application of the continuity method is to the 
transformation formula: Suppose { fl} and {f/} are two collections of n holomorphic 
functions each having the origin as isolated common zero. Suppose, moreover, 
that for some holomorphic matrix (aij(z)) 

f,'= Z a,Jj. 
J 

Then the transformation formula is 

[gdz~ A_~.. ̂ dz ,~  (gdeta,jdz~ A.. .  Adz , )  
(3.6) Res~o/\ f l ,  ..~,f, ] =Res~o~ fl~(~.,--f~ . 

This is proved first in the nondegenerate case by the explicit formula (3.5), 
and then in general by making generic perturbations and using (3.9). 

(ix) The transformation formula, in turn, may be used to prove the local 
duality theorem of  Grothendieck: 14 

Let Iy = ( f l , - . . ,  f,) be the ideal generated by the f~'s and consider the pairing 

Resf( ,  ): O/Iy x (?~Is ~ 

given by 

(g -  h dz 1 ix .../x dz, 
Resy(g, h) Res~o/ 

s, . . . .  7Z  % 

The local duality theorem asserts that: This pairing is nondegenerate. 
This may be verified directly when f~ = z~', and then demonstrated in general 

using this case together with the transformation formula (3.6). 
We now discuss some global applications of residues. A special case of (3.4) 

is the 

Residue Theorem for Compact Manifolds. Suppose that M, is a compact, complex 
manifold and co is a meromorphic n-form on M having polar divisor D = D 1 +...  + D, 
where the intersection D1 ~""  c~ D. = ~, P~. Then 

v 

(3.7) ~ Resevco=0. 
v 

Here is an alternate proof of (3.7) without appealing to ~-cohomology. Let 
s~ be a global holomorphic section of the line bundle [Di] ~ M whose divisor 
(s~) = Dv Choosing a metric in these line bundles, the real n-cycle 

~ = { I s l l  . . . . .  Is.l=~} 

14 C.f.R. Hartshorne, Residues and duality, Springer Lecture Notes No. 20 (1966) 
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will, for e sufficiently small, decompose into a sum of n-cycles F v around the points 
P~ with Respv o9 = ~ o9. If now A = {Isxl _-> ~, Is2 f . . . . .  I s.I = e} then o9 is holomorphic 

Fv 

~in a neighborhood of A and dog=0 there. Consequently, by Stokes' theorem 

Resp  o9 = o9 
v Fe 

= ~ o 9  
dA 

= 0 ,  

thereby re-proving (3.7). 
Now we shall prove the following: 

(3.8) Converse to the Residue Theorem. Suppose that M and D = D1 + " .  + D, are 
as above, and assume that the D i are positive in the sense of Kodaira. Given complex 
numbers cv, we may find a meromorphic n-form o9 on M having polar divisor D and 
with Respv o9 = cv if, and only if, 

c~=O. 
v 

Proof. We shall use the formalism of the relative cohomology H*(X, U; ~-) of a 
sheafo ~ on a space X modulo an open subset U of X. These groups may be defined, 
either by injective resolutions or by a ~ech procedure, and for our purposes the 
two salient properties are the exact cohomology sequence 

H q ( X , ~ )  P , Hq(U,~)_~ Hq+I(X ' U;~)---, Hq+I(X,~)  

where p is the usual restriction mapping, and excision 

H*(X, U ; ~ - ) " . H * ( X - V ,  U - V , ~ )  

where V c U is a relatively compact open set. 
We first apply the relative cohomology where X =M,  U =  M* = M - 0  Dr, 

and f f  = Y2". Using H"(M*, s and the Kodaira-Serre duality H"(M, s ff~, 
we obtain 

(3.9) H"-I (M *, s M*; O")--~C-~0 

from the general exact cohomology sequence. 
Next, we let U, be a small ball around P~ and apply the exact cohomology 

sequence when X = U ,  U=U*=U~-{P~},  and ~-=~2". Using Hq(U~,f2")=0 
for q > 0 we obtain 

(3.10) H"-I(u*,f2")--.H"(Uv, U * ; f P ) - ~ 0 ;  

this is an isomorphism for n > 2. 
Finally, we combine (3.9) and (3.10) by applying excision to the case X = M ,  

U =M*,  V= ~ U~; we obtain the exact sequence 
v 

(3.11) H"-~(M*,I2")-~@H"-I(U*,I2 ") s---,~E--}O. 
-r 
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Actually, we have only proved (3.11) under the assumption n > 2 so that (3.10) is 
an isomorphism; the modifications necessary to treat the n=  1 case are easy to 
fill in. 

The mapping R may be identified as 

(3.12) R ((~ 09~) = Z Respv 09 ~ 
v v 

where the local residue map is defined by 

H"-'(U*, f2")'~H~ ,"-I(U*) R~ ff~ 

with the first map being the Dolbeault isomorphism and the second the integration 
map ,  

I . .  our 
A meromorphic form 09 on M with polar divisor D defines a class [09]6 
H" - t  (M*, ~"), and from (3.11) and (3.12) we have still another proof of the residue 
theorem (3.7). 

Note that the same is true if we only assume 09 is holomorphic in M - D ,  having 
perhaps even an essential singularity on D. 

Conversely, suppose we are given complex numbers c~. By the local duality 
theorem (ix) discussed above, we may find a meromorphic form 09~ in Uv having 
polar variety D n U~ and with Resev 09v = c~. We consider 09~ as defining a class 
[09deH"-l(U*;  f2"). Referring to (3.11), there is a global class xeH"-I(M *, g2") 
with xl U~ = [09,] if, and only if, the residue relation ~ c~ =0  is satisfied. 

v 

Assume this to be the case, and consider the open covering U = { U/= M -  Di} 
of M*. If the acyclicity condition 

(3.13) nq(u~o c~ .. �9 n U~p, f2") = 0, q>0 ,  

is verified, then by Leray's theorem the cohomology 

H* (M*, ~2")- H* (U, f2") 

is computible from the (~ech complex for this covering. In this case we may find 
a holomorphic form 09 on M -  D, perhaps having essential singularities along D, 
but whose class [09] = x in H"-I(M *, Q"). 

Now by assumption the Di are positive, and this gives us something much 
stronger than (3.13). Namely, by the Kodaira vanishing theorem 

(3.14) Hq(M, f2"(D,o+...+Di))=O, q>0 ,  

where f2~(*) is the sheaf on M of meromorphic forms having poles on a divisor * 
We may think of (3.14) as giving (3.13) but with only first-order poles allowed on 
Dio+...+D~p. Then, if one thinks through how (3.13) is used in the proof of 
Leray's theorem, it follows by the very same argument that H* (M*, 12") may be 
calculated from the (~ech complex @ H~ O"(Dio +... +D~)). In particular, 
there is a surjective mapping ,o ..... ~) 

H~ f2"(O)) ~ H"-~(M *, f2") ---~ 0, 

and we may find 09 having polar divisor D and cohomology class [on] = K. Q.E.D. 
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We now discuss the residue theorem in some special c a s e s - t h e  case of IP" 
will be dealt with extensively in the next section. 

In case M is a compact Riemann surface, what we have found are the so-called 
elementary differentials of the third kind. 

Suppose next that M is an algebraic surface on which we have line bundles 
L and/2. Assume that we are given curves C tiLl and C' elL[ meeting transversely, 
and denote by [K + L + El the complete linear system of zero divisors of mero- 
morphic 2-forms e~ having polar curve C + C'. We will prove the 

(3.15) Proposition. I f  a curve E~IK + L + s passes through all but one point of 
C.  C', then it contains this intersection entirely, is 

Proof We suppose that C and C' are given by holomorphic sections a~H~ 
and a'~H~ and E by z~H~174 Then 

T 
( D =  

O-- O-' 

is a meromorphic  2-form on M having polar divisor C + C' and vanishing at all 
but one point of C n  C'. From (3.5) we see that for P e C n C ' ,  Reseog=cez(P) 
(ce@0), and the proposition follows from ~ Respog=0.  Q.E.D. 

P~C c',C' 

In the second paper of this series we shall systematically discuss results of 
this sort and show how they may be used to characterize complete intersections. 
Here, a propros our discussion of the K3 surface in Section IId,  we give the 
following illustration in this special case of how (3.15) may be utilized: 

Suppose M is a K3 surface and L--*M is a positive line bundle. Then the 
complete intersections 

F =  C.  C' (C, C'~IL[) 

depend on 

6 = L . L  

p a r a m e t e r s - t h i s  was proved when we previously discussed K3 surfaces (c.f. 
(2.23)). The zero cycle F also has degree equal to 6, and hence depends on 26 
parameters. For a general F ~ M  ~ ) - n o t  necessarily a complete in te r sec t ion-we  
consider the condition: 

(,) Every curve E612L[ which passes through all but one point of F necessarily 
contains F. 

According to (3.15) a complete intersection has the property (*), and we shall 
now prove a converse. Precisely, we shall show: 

(**) If  a zero cycle F has the property (*) ,  then F lies on a pencil [C+t C'[ of 
curves in ILl. If, e.g., one of these curves is irreducible, then F= C. C' is a complete 
intersection. 

15 This proposition may be viewed as the geometric form of the residue theorem (3.7) 
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Proof Although not essential it will make the argument run more smoothly if 
we assume that the complete linear system ILl induces a projective embedding 

M__. IF-~ +I 

i I ~ . l ,  \ 
~ d i m l L ] = T + l  by(2.21)). Thus the curves C~ILI are hyperplane sections 

/ 

for this embedding. 
Now we make two simple observations from linear algebra. Suppose that 

/]1 . . . . .  PN is a set of N distinct points in 1W where N > n. Then the P~ lie on a IF )"- 2 
if, and only if, any n - 1 of them are linearly dependent. This is clear. Now suppose 
that P~ . . . . . .  P~,-1 is any subset of n - 1 points selected from all the {P~}. Then these 
are linearly dependent if, and only if, any hyperplane H passing through all but 
one of them necessarily contains this last point as well. Putting these two statements 
together we deduce: 

(***) In order that F = P I + - ' . + P ~  ( 6 = L . L )  should lie on a pencil in ILl, it is 

sufficient that for any subset containing ~ of these points, say, P~ . . . . .  ~/2 for sim- 

plicity of notation, that any curve C e lLI which passes through all but one P~ necessarily 
6 

contains P~ also - here v = 1 . . . .  , ~. 

We must prove that (*)~(***). 

Since, by the Riemann-Roch (2.21), dim l L l = 2 + l ,  we may find a curve 
c .  

C'~tLI passing through PJ/2+I  . . . . .  P~. Suppose first (as will generally be the case) 
that C' does not contain any of/]1 . . . . .  P,/2. Then for any C~rL[ passing through 
/]1 . . . . .  ~ . . . . .  P~/2, C+ C'e[2LI passes through F-{P~}, and hence contains F 
entirely according to (.). Since P~ does not lie on C', it must lie on C and (***) is 
verified. 

In the degenerate case we cannot directly use (***) and must argue as follows: 
Suppose, after renumbering, that C' contains Pz+I . . . . .  P~/2 but none of the points 
/]1 . . . . .  Pz. For 1 < v < 2  choose CelLI passing through/]1 . . . . .  ~ . . . . .  P~. Then, as 
before, C+  C' contains F, and so P~ lies on C. But then P1 . . . . .  P~, and hence 
/]1 . . . . .  P~/2 are linearly dependent. 

6 
In summary we have shown that any ~ points selected from Pt . . . . .  P, are 

linearly dependent, and hence these points must lie on a IP ~/2-1 in IP ~/2 + 1. Q.E.D. 
It is perhaps interesting to compare (**) with the previous condition (2.26) 

in this example. Suppose that M c IP  3 is a nonsingular quartic surface and that 
L0 is a general line meeting M in four distinct points Pt, P2, P3, P,. We want to 
describe these points Qi close to P/such that Q1, Q2, Q3, Q4 lie on a line L. 

Let co be the holomorphic 2-form on M and choose holomorphic coordinates 
(zi, wi) near P/ such that o>=h~(zi, wi)dziAdwi. According to (2.26) the set of 
zero-cycles F = QI + Q2 + Q3 + Q4 of the form L .  M constitute an integral variety 
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of the differential system 

4 

( ~ ) ~ hi(Qi) dz,(Qi) A dwi(Q,)=O. 
i=1 

There are many 4-dimensional integral varieties of this system passing through 
Fo =/]1 + Pz + P3 + P4, but only one of these describes the geometric property "four 
points lie on a line." 

On the other hand, let X - [ X o ,  X1, X2, X3] be homogeneous coordinates 
for lP 3 and FI(X) . . . . .  Flo(X) a basis for the homogeneous quadric polynomials. 
According to (**) the conditions that points P~ close to Qi lie on a line is 

//FI(Q1) . . . . .  Flo(Q1)\ 
, IF~(Q~)  . . . . .  F lO(02 )~  < 3 .  

(~  "I#) ranKIFi(O3 . . . . .  Fio(O3)]_ 
\ F~ ( Q.,) . . . . .  Flo(04) / 

It does not seem obvious how to directly relate (4~) and ( ~  #) ;  in particular, note 
that ( #  #)=~(#)  ? 

In the next section we will show that the residue theorem (3.7) and classical 
Abel theorem from Section I a are closely related. On the other hand, we may 
view (3.15) as a geometric form of the residue theorem. Consequently, proving 
the converse (**) may again be interpreted as inverting the Abel-type conditions 
(,). 

(b) Residues and the Classical Abel Theorem 

On IP 2 with affine coordinates (x, y) we consider two algebraic curves C and D 
having respective equations f (x ,  y ) = 0  and g ( x , y ) = 0  of degrees m and n. We 
assume further that C and D have no common component, but in contrast to 
our previous discussions multiple components of either one individually are 
allowed. The most general meromorphic 2-form co on IP 2 having polar curve C + D 
together possibly with the line at infinity has an expression 

p(x, y) dx A dy 
(3.16) ~o 

f (x, y) g(x, y) " 
y' 

If p(x, y) has degree d and we set x =  1 ,  y = ~ ; ,  then 

1 ~(x ' ,y ' )dx'^dy'  
(x') "+" - a -  3 f(x' ,y')~(x',y') 

where f (x', y')= x "  f ( ~  Y' ) , ~7 , etc. From this we deduce: 

The rational 2-forms on IP 2 having polar curve C + D are given by expressions 
(3.16) where d e g p < m + n - 3 .  
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If C .  D = ~  P~, then by the residue theorem (3.7) 

Resev co = 0. 
v 

In case the P~=(xv, Yv) are mn distinct finite points, this reduces to the Jacobi 
relation 

p(x~, y~) =0,  
(3.17) ~, O(f, g) 

t3(x, ~ (x,, yv) 

already utilized in Section I c and concerning which we shall have several remarks 
in this series of papers. 

For  the moment,  we observe that the n-variable version of (3.17) is 

V p (xd = 0 
(3.18) ~ t3(f~, ...,f~) ix" 

where fl(x) . . . .  f,(x) are polynomials of degrees dl . . . .  , d, whose divisors meet 
transversely at d 1 ... d, distinct finite points, and where p(x) is a polynomial of 
degree at most dl +... + d , - n - 1 .  For n =  1 we again obtain the ubiquitous 
Lagrange interpolation formula (1.10) 

p(x~) =0,  deg p < d e g f - 2 ,  
f'(x~) 

and (3.18) may be regarded as a generalization of this formula. Indeed, this is the 
context in which it was originally taken up by Jacobi )  6 

Turning now to the converse (3.8) of the residue theorem (3.7) in the case at 
hand, we assume that C and D meet at mn distinct finite points (x~, Y0 and set 

1 
j v - O ( r g  ) J ,  . Given complex numbers c~ we seek a polynomial p(x,y) of 

- -  (x~,  Yv) O(x, y) 
degree m + n -  3 with p(x~, y~)=c~. 

(3.19) The relation 

Ec j =0 
V 

is the necessary and sufficient condition for the existence of the desired polynomial. 

Indeed, by the converse to the residue theorem we may find a rational 2-form co 
having polar curve C + D  and residues Respv co = c~j~ provided that the relation 
(3.18) is satisfied. Since co has an expression (3.16) our result follows. 

From a sheaf theoretic viewpoint, if we set F = C. D and let Ir(k) c (_Op2(k) be 
the sections of the k-th power of the hyperplane line bundle which vanish on F, 

16 C.f.c.G.J. Jacobi, Theoremata nova algebraica circa systema duarurn aequationum inter duas 
variabiles propositarum, Gesammelte Werke, Band III, pp. 285-294, and De relationibus quae locum 
habere debent inter punta intersectionis duarum curvarum vel truim superficierurn algebraicarum 
dati ordinis, simul cure enodational paradoxi algebraici, G. Werke III, pp. 329-354 
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then from the exact cohomology sequence of 

0 ~ I r ( m + n - 3 )  ~ OF2(m + n -  3) ~ gPr(m+n-3)  ~ 0 

and Hl(d~,2(k))=0 for all k, what we just proved is equivalent to 

(3.20) dim HI(IP 2, Ir(m + n - 3)) = 1. 

On the other hand, if not both m < 2 and n < 2, then a general zero cycle Fe(Ip2) Cm"} 
has 

H x (IP 2, Ir(m + n - 3)) = 0. 

In Part II we shall discuss the manner in which (3.20) characterizes complete 
intersections, not only on IP 2 but on general surfaces as well. 

We now relate (3.18) to the trace form of the Abel theorem for linear spaces 
given in Section IIe. For this we suppose that f ( x , y ) = f ( x x  . . . .  , x . , y ) = 0  is a 
hypersurface V of degree d in IP "+~ having no multiple components. We may then 
assume that the line x~ . . . . .  x , = 0  meets V in d finite points having distinct y 
coordinates. Consider now the intersection of V with a variable line L(a, b) having 
equations 

/ l(X, Y) ~---X 1 - - a  x y - b x  

(3.21) : 

l,(x, y) = x ,  - a, y - b,. 

We want to apply the residue theorem to the differential 

q(x, y) dxl  A . . .  ^ dx ,  ^ dy 
gO--  

1 l(x, y ) . . .  1,(x, y ) f ( x ,  y) 

where deg q (x, y) < d - 2. For this we need to compute the Jacobian of the functions 
in the denominator, and this is accomplished by the 

(3.22) Lemma. For the li(x, y) given by (3.21), 

dll ^ "'" Ad l ,  A d f  =F'(y)  dxl  ^ ... ^ d x ,  A d y  

at a point (x, y) satisfying li(x, y ) = f ( x ,  y ) = 0  and where 

F(y) =f (ax  y + ba . . . . .  a. y + b,, y). 

Proof  

A ( d x i - a i  dy) ^ �9 2., - -  a x j + = -  dy 
I j=~ c3xj Cy J i=1 

= + ~, al dxl A . . . / x  d x .  ^ dy 

=F'(y) dxx ^ ' " / x  dx ,  ^ dy. Q.E.D. 

Writing the intersection L(a ,b ) .  V=~P~(a ,b )  where P~=(xv, y,), the residue 
theorem (3.18) gives 

Q(y ~) ^ 
(3.23) ? F , ( y ~ ) = u  

where Q(y) = q (a~ y + bl,  . . . ,  a. y + b. y). 
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At this point we have come full circle. Referring to (2.30) we have again proved 
that the trace Tr~ ~O = 0 where 

p(x, y) dx 1 ̂ . . .  ^ dx .  
~ =  , d e g p ~ d - n - 2  

aT y) 

and I is the incidence correspondence given by points in IP "+1 lying both on Vand 
on a line. The direct connection between this residue proof and the one given in 
Section IId will be brought out in the next section when we discuss Poincar6 
residues. 

At the moment, we wish to note that for a nonsingular hypersurface VcIP "+1 
of degree d and holomorphic form ~ k = p ( x , y ) d x l ^ . . . ^ d x , / ? f / O y ( x , y  ) 
( d e g p < d - n - 2 )  on V, we have proved the Abel theorem 

T r 1 ~ = 0  

in three ways: First, by the local properties of the trace and global property 
fP(~(1, n +  1))=0 of the Grassmannian; secondly, by the explicit computation 
centered around the formula (2.30); and thirdly, as a special case of the residue 
theorem. Of these the last seems most penetrating - e.g., since there is no restriction 
that the f~ in the denominator of the rational form ~o should not have repeated 
factors, we obtain Abel-type realtions for more general intersections than straight 
lines, etc. These matters will be further pursued in our second paper on Abel's 
theorem. 

(c)  Poincard Residues and the Proof of the Main Iheorem 

Let M be a complex n-manifold and 09 a meromorphic n-form on M whose polar 
divisor is V+ Wwhere each component of Vhas multiplicity 1 and codim (V~ W) > 2. 
Locally, 

h(z) dzl ^ " "  ^ dz. 
( .1)= 

f ( z )  g(z) 

where f g~ h are holomorphic functions and V= (f), W= (g) with f, g being relatively 
prime. The Poincar~ residue Rv(~O) will be a meromorphic ( n -  1) form on V whose 
singularities are contained in D =  V~i,g+(VnW). To define it we note that at each 

point z*e V - D  some derivative ~ (z*)=~0, and since O - d f l v =  L Of i=1 ~zi dzi implies 

dzi _ - d z j  modulo {dzl . . . . .  dz2 . . . . .  dz/'~ . . . . .  dz.}, 
Of , . , - O f  , . ,  
~z t z ; -~Z-~z t z ; 

j i 

the locally defined expression 
/% 

Rv(oO=(_l ) ._~h(z*)dz l  ^ ... ^ d z ~ ^  ... Adz ,  (3.24) (restricted to f = 0 )  of g(z*)F z (z*) 
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is independent of the index i and is holomorphic on V -  D. It is also straightforward 
to verify that it is independent of the local coordinates and defining functions of 
V and W, and serves to define the Poincar6 residue. 

In case V is smooth we may take f(z) = z, and then 

Rv \( h(z) dzx z.^"" ̂ dz") =h(z) dzl ^"" Adz._, 

tying it in with the usual notion of residue. For such smooth V the Poincar6 
residue operator induces an exact sheaf sequence 

o - - ~ a ~ a ~ ( v )  ~ , aV'-- .O,  

so that, e.g., every holomorphic ( n -  l)-form on V is a Poincar6 residue in case 

H 1 (M, 0~)  = 0. 

In co is a meromorphic n-form with polar divisor V+ W+Z where all compo- 
nents of Vand Whave multiplicity 1 and the obvious general position requirements 
are met, we may iterate the Poincar6 residue, and when this is done 

(3.25) Resw(Resv(co))= - Resv(Resw(co)). 

Continuing along this line, if co has polar divisor D1 + . . .  + D, where the D i are 
smooth and meet transversely at a point P, we may iterate the Poincar6 residue 
operator n times and we claim that: 

(3.26) Resol(Reso2(... Reso, - l(Reso,(co))...))= Resv(co) 

where the right-hand side is the previously defined point residue (3.1) (note that 
both sides are alternating in the Di). Since both sides of (3.26) are independent of 
choices, we may take 

h(z) dz 1 ̂ . . .  ^dz,  
CO.-~- 

Z 1 . . .  Z n 

where (zi)=D i, and then both sides are equal to h(0) by (3.5). Obviously, (3.26) 
may be proved under less stringent hypotheses, but this will suffice for our purposes. 

As a first use of Poincar6 residues we suppose as in Section IIe that VcIP  "+1 
is an algebraic hypersurface having no multiple components and affine equation 
f(x, y)=0.  The most general meromorphic (n+ 1)-form co on IP "+1 having polar  
divisor V + W where codim (Vn W)>  2 has an expression 

r(x, y) dx I ^ . . .  ix dx. A dy 
C O - -  

f(x, y) 

where r (x, y) is a rational function not identically equal to ~ on V. The Poincar~ 
residue is given by 

Resr(co)=r(x, y)dxa ^ ... Adx,. (3.27) 
Of /cqy(x, y) ' 

this; at last, explains why the form (1.8) was so convenient for the study of abelian 
integrals. 
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We now come to the proof  of  the main theorem. 
The first step is to reduce to the case of a hypersurface in IP" + 1. If  V, c IP" +'(r  > 2) 

is either a global algebraic variety or germ of analytic variety, then we may project 
V from a generic linear space IP "-2 c I P  " + ' -  V to obtain a hypersurface in IP "+~. 
This is done by choosing a generic IP T M  not meeting IW -2. Then each point 
A M P " + ' - I P  ' - ~  together with IW -2 spans a IW-I(A) meeting IP "-~ in a point 

(A). The resulting projection V ~  it (V) c 1P" + ~ is birational in case V is a global 
algebraic variety and biholomorphic if V is a germ of analytic variety. Here is a 
picture for n = 1, r = 2 .  

/ 
let '  

/ 
The inverse image of a line L c I P  "+1 is an r-plane A(L) in IP "+', and generically 

L .  n (V )~ -A(L )  �9 V 

under the projection mapping. If $ is a meromorphic  n-form on V having trace 
zero on 113 (r, n + r), then u ($) will be a meromorphic  n-form on n (V) having trace 
zero on G(1,  n +  1). Based on this we may reduce to proving our result in the co- 
dimension 1 case. 

We now explain the idea behind the proof. 17 Given an algebraic hypersurface 
V of degree d and rational n-form $ on V, by (3.27) we may write $ = Resv(7 j) as 
the Poincar6 residue of a rational (n+ 1)-form on IP "+1. If $ is of the first kind 
relative to the lines in IP "+1, then we uniquely have 

~ = p ( x ,  y) dx I A ... A dx ,  A dy  

f (x, y) 

where p (x, y) is a polynomial  of degree < d -  n - 2 and f ( x ,  y) = 0 is the equation 
of V. We consider lines L having equations 

11 = x 1 - a  l y - b  I = 0  
(3.28) : 

l .  = x .  - a .  y -  b .  = 0 

17 Further explanation-only with the advantage of hindsight-is given at the conclusion of the 
proof, where two formal identities (,) and (**) which underlie the argument are discussed-c.f, also 
(3.29) below 
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Any such line L has y as linear coordinate and meets V in d points y,(L). On L 
there will be an equation 

(3.29) P ( x ' y ) d y - ~ p ~ ( L )  d y 
f (x ,  y) ~ y - y~(L) 

where the p~(L) are residues of some sort (to be made precise later). The main 
observation is that because of this the right-hand side of (3.29) depends only on 
(V, ~) near the points of intersection LnV,  while the left-hand side contains the 
equation of V.. Consequently, given the local data (V v, ~kv) of our main theorem, we 
may attempt to reverse our steps and define 

(3.30) 7t={~pv(L)Y-Yv(L)~dY ] /x dxa /X ... /x dx,.  

If we can show that this makes sense in some neighborhood of a line L 0 in IP TM, 
then by a Levi-Hartogs type of theorem, ~ will extend to a meromorphic (n+ 1)- 
form on IP TM and this will prove our result. The trace = 0  condition is what will 
allow us to carry this idea out. 

We now make this all precise, still assuming for a while that we have the global 
data (V, r with ~b = Resv(7' ) as above. Consider the ineidence correspondence 

I c I P  "+1 x ~(1,  n+  1) 

consisting of all pairs 

{(P, L): P~L}.  

The equations of I are just (3.28) relative to our standard affine coordinate system 
(x, y; a, b) on IP "+1 x (13(1, n+  1). The projection map 

~: I -* IP "+1 

is a fibration with fiber n - l  (A) the projective space IP"(A) of lines through a point 
AelW +1. We wish to show that: 

(3.31) The pull-back re* ~ may be expressed in terms of the local behavior of V 
and ~ near the points of intersection of V with a line. 

Once this has been accomplished it is possible to begin reversing the reasoning. 
Writing L.  V=~] P~ where P~=(x, ,y 0 the formula which will establish (3.31) is 

V 

(3.32) n * ~ = ~ + _ { ~ R e s p v ( ~ ) y ~ y ~ } y l a l d a a ^ d b a o  

where A = (i 1 < . . .  < ik) runs over index sets selected from (1, ..., n), ]AI = k, and A c 
is the complementary index set. 

Proof of(3.32). For any function q(x, y) on IP TM, we let 

Q(y, a, b )=Q(y)=q(a  x y + b x . . . .  , a ,y  + b,, y) 

be the pull-back of q to I. Since, by (3.28), 

d x , -  y da~ + db i modulo dy 
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we find that 

(3.33) n*(dx 1 ̂  ... ^ d x , ) - ~ y  IAI da A A dba~ modulo dy. 
A 

Consequently, 

(3.34) n* 7 ' -  P(y) dy F ( y ~  ^ {~  ylAI da A ^ dbAc). 
A 

O n  the incidence variety I, for fixed (a, b) the differential form 

P(y) d y 
q~ (a, b) = 

F(y) 

is rational on the line L(a, b) given by (3.28) and has first-order poles at the 
y~ = yv(a, b). The residue at y = y~ is 

, ,  P(Yv) 
p~(a, D)= F - ~ ) '  

and, as remarked on previous occasions, the relation ~ p~ =0  follows from the 
v 

Lagrange interpolation formula. These residues uniquely determine (p; in fact, 

Combining this with (3.34) gives 

(3.35) n* ~ =  ~ +_ ~ p~ ylal da A/~ dbAc, 

which is the first step in the proof of (3.32). 
Next, we define 

e) = Resv(f2 ) 
11 ... l n = 

where 
(3.36) I2= P ( x ' y ) d x t ^ ' " ^ d x " A d Y  

(x 1 - a 1 y -  bl) ... (x , , -  a, y - bn) f ( x ,  y)" 

The forms o9 and t2 have point residues at P~ = (x,, Y3. Letting H i be the hyperplane 
I i =0, these point residues may be calculated by twice applying the formulae (3.25) 
and (3.26) for iteration of Poincar6 residues. Thus 

Resp~ (m) = ___ Resnl (Resu2(... Resn,(~o))...) 

= _+ Resnl(Resn2(... Resn.(Resv(f2)...)) 

= _ Resv(Resnl(Resn~(... Resn,(t2))...) 
, ~ ( P ( y )  d y ]  

= + p ~ .  

We may combine this with (3.35) to prove (3.32). 
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Now are almost ready to reverse our steps. In doing this one comes across the 
need for two lemmas whose statement and proof we shall give first: 

(3.37) Lemma. Let q be a meromorphic function defined in neighborhood U of a 
line L o in IP "+1. Then r 1 extends to a rational function on IP "+1. 

Proof. This is a variant of the Levi-Hartogs' theorem and has to do w i t h - b u t  is 
not implied b y - t h e  pseudo-concavity of IP "+1-  U. Use of the incidence variety 
gives a convenient method for proving the lemma, and we shall carry this out for 
IP 2, which is the essential case. We may then think oflP 2 -  U as being the comple- 
ment {(x, y): II x II 2 "Jr- II y II z > R z } of a ball in C 2. If ~ (x, y) is a meromorphic function 
in U c ~  2 whose polar locus is contained in the coordinate axis {x =0}, then for 
some large k, x k ~ (x, y) will be holomorphic in the exterior of the ball, and hence by 
Hartog's theorem extends to a holomorphic function on Cz. This is the extension 
result we shall use in a little while. 

Now choose affine coordinates (x, y) on IP 2 such that Lo = {x = 0}. Lines L(a, b) 
near Lo have equations { x = a y + b :  lal, Ibl <~}, and we let 

I U C ]p2 X IP 2 .  

= {(P, L(a, b)): P~L(a, b) and lal, bb] <e} be the restriction of the incidence corre- 
spondence to U. Then Iv is the disjoint union of the lines in U, and the projection 

Iv " ~ U  

has fiber the IP 1 of lines through a point in U. 

I Y 

Io X-u 

(a,b] L 

We assume that the polar curve C of q(x, y) does not meet the line L~ given by 
y = oe in U. Then C meets each line L(a, b) in finite points yl(a, b) . . . . .  ya(a, b), and 
we consider on Iv the function 

d 

�9 (y, a, b ) =e  "("'b) 1-1 (y-yv(a,  b)), 
v=l  

where/2(a, b) is holomorphic for ]a[, ]b] < a  ~ is meromorphic in lv and has polar 
locus d- L| If we can choose/~ such that �9 = n* tO comes from U, then 

will be a function to which Hartogs'  theorem, as discussed above, will apply. Since 
the zero curve for ~ is the same as that for q, it follows that the zero curve {q =0} 
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has a global equation f (x ,  y ) = 0  where f is a polynomial of degree d. Similarly, 
the polar curve {~/= oo} is given by g(x, y) = 0. Then r/= C(f/g) where C is a nonzero 
constant. 

It remains to show that �9 comes from U; i.e., we must choose p so that ~(y, a, b) 
depends only on x = a y + b and y. A general version of this will be discussed in the 
next lemma, but in our case it is pretty clear that the necessary and sufficient 
condition that ~ =  r y) is 

d ~ - 0  modulo {dx, dy}, 

or, equivalently, 

d~ ^ dx ^ dy=_O. 

When computed out this latter equation is 

( ~ - '  ~ t  0 - - 0 .  

Denote by X the vector field on the left-hand side. Then 

X.  log �9 = X- # + ~ X- l o g ( y -  yv(a, b)). 
a,b 

The right-hand side of this equation is holomorphic for finite y since X-  log ~ -  0, 
and at y = oo it remains bounded. Consequently, by the maximum principle 

X.  log �9 

depends only on (a, b), and so we may choose # (a, b) to make X- log �9 - 0. Q.E.D. 

It will be seen that the proof  of this lemma contains the germ of the argument 
for the main theorem. 

(3.38) Lemma. Given connected manifolds M and N, a surjective smooth mapping 

f :  M--~N 

having maximal rank everywhere, and a smooth form ~ on M, then e = f * f l  for a 
(unique !) form fl if, and only if, 

(~, r =0= (d~, ~> 
for all tangent vectors ~ e T(M) with f.(~)= O. 

We shall say that a form ~ satisfying (~, ~) = 0 for all ~ with f ,  (0 = 0 is horizontal 
(these tangent vectors ~ are vertical). In case deg a = dim N the conditions of the 
lemma are 

is horizontal 
(3.39) 

d~t=O. 

Proof of(3.38). The conditions are obviously necessary. Also, fl is unique in any 
open set where it exists. Consequently, it will suffice to prove the sufficiency around 
a point on M where we have product coordinates (u, v)=(w I . . . .  , un; vt . . . . .  Vm) 
with f(u, v)= u. If ~t is horizontal, then 

=Y, ~1(u, v) dut 
I 
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where the ~1(w, v) are C ~ functions. Consequently, 

~l (U,  I)) 
dye) ^ dul 

modulo terms containing only du's. If da is horizontal, then 

~ d u ,  V)=O 
0vv 

for all cr v and ~ = r c * ( ~ t ( u ) d u i ) .  Q.E.D. 
I 

Now we have all the ingredients to complete the proof of the main theorem. 
Given the local pieces of analytic variety K and meromorphic n-forms ~bv as in the 
statement, we let U be a neighborhood of our fixed line Lo={X 1 . . . . .  xn=0} 
such that for L ~ U the trace is defined and 

(3.40) ~ r  V~)= 0 
V 

Set Iv = {(P, L): P ~ L ~ U} = n-  1 (U) and invert (3.32) by defining the meromorphic 
(n + 1)-form �9 in Iv by 

(3.41) O = ~ _ _ . { ~ R e s e v ( ~ ) Y - y o d y  ~y la ldaaAdbac .  

Since, by (3.33) 

n* (dxl A .. . A dx ,  A d y) = ~, -t- yl,tl da n A db ao A dy , 
A 

we see that �9 is horizontal for the fibration 

I v ~ , U .  

If we can prove that 

(3.42) dO=O,  

then, according to Lemma (3.38) in the form (3.39) we will have 

O=rt* 

where ~ is a meromorphic (n + 1)-form in U. Writing ~ = r/dx~ A. . .  ^ dx~ A dy 
we may then apply Lemma (3.37) to r/ to conclude that ~ extends to a rational 
form on IP "§ The polar set of ~ is our desired V and ~,=Resv(~). 

Thus it all comes down to proving (3.42). To do this we put the assumption 
(3.40) in convenient form. Choose small open sets U~clP ~§ and holomorphic 
functions f~(x,y)e(9(U~) such that V~ is the divisor of f~. Then we may find 
gve(9(U,) with 

g,(x, y) ^ . - _ A  ,Ix, ^ ely 
(3.43) Resv~ 

t L(x, y) J 

g~(x, y) dxl  A "" A dx ,  

of, - -  (x, y) 
dy 
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The exact same computation as in the proof of the basic formula (2.30) gives 

" r ~" a ~  A A a D A c  
, F; (y,) J 

where, as before, F(y)=f(ax y+bl . . . . .  a ,y+b, ,y ) ,  etc. The hypothesis (3.41) is 
equivalent to 

V y~ G~(Y0 =0  (k=O, n). ~(yO ....  

On the other hand, referring to the proof of (3.32) 

pv=Resv. ( ~ )  (definition) 

where ~ is the form on the right side of (3.43) 

F~(y3 

by the same argument as used to prove (3.26). 
Consequently, the assumption (3.41) is the same as 

(3.44) ~ k (k=0,  n). y~ p~ = 0 . . . .  
u 

We now finally compute dR. Writing 

(3.45) d~= ~ qbH(y,a,b)dy ^ d a t ^ d b s ,  
I ,  J 

it is clear that ~xs has at most second-order poles at y=y~(a, b). In fact, dR is holo- 
morphic on the divisor y=y~ in Iv: Near y=y~ we may use a Taylor's expansion 
to write 

F'(y~) y~-yv ^ dxl ^ ' "  ^ dx.+(holomorphic form) 

[G~(y)dy] 
= ~ !  ^ dxl ^ ' "  ^ dx. + (holomorphic form), 

�9 e"(y~) , 
since F(y) = F' (y~) ( y -  y~) + ~ tY - Yv)2 +. . . ,  and so 

[G~(y) dy A dxi A"" ^ dx,.) 
dR = d ~ F - ~  + (holomorphic form) 

= 0 + (holomorphic form). 

The point in this calculation is to eliminate the dependence of y~ on (a, b), at least 
modulo holomorphic terms. 
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1 
Now look at d45 near the divisor y =  0o. Set u = 2  and use 

Y 

I = k 

1 - v  k=O 

to write near u = 0 

~ Y - Y v  u 

~ _ _  U k 

v U 

= u" x (holomorphic term) 

by (3.44). Referring to the definition (3.41), we set that 4~ is holomorphic near 
the divisor y =  oo, hence the same is true of d45 and thus of the ~is(a, b, y), and then 
finally, d ~ - 0  since the 4~ij are holomorphic for finite y also. Q.E.D. 

Having proved the result, we may extract the essence of the argument as being 
the converse of the Lagrange interpolation formula in the following sense: 

Given distinct points {Yv} and complex numbers {pv}, the conditions that we can 
find a rational 1-form q~ on IPl(y) having first order poles at y=y~ with residue p~ 
and a zero of order n at y = 0o are 

~ p ~ - - O  (k--O . . . . .  n + l )  

The form q) may be written in the two ways 

dy p(y) dy 
(*) ~P~y_y~-~ f ( Y ~  

d 

where f ( y ) =  I-I ( y - y O  is the defining equation of the {y~} and p(y) is a polynomial 
v = l  

of degree < d - n - 2 .  The connection between the two sides of (*)  is 

P(YO 
(**) P~=Resrv(q~(Y))=f,(yv). 

Our proof of the main theorem is just an extension of this observation allowing 
dependence on parameters. 
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Notes Added in Proof 

3 Along a different line, it seems pretty clear that results at a deeper level than our main theorem 
can be expected in the presence of the "maximum number" of addition theorems, rather than just one 
such relation. This study was initiated by Blaschke-Bol for the situations corresponding to curves in 
the plane and 3-space, and the general version for curves is the object of work in progress by S. S. Chern 
and the present author. Roughly speaking, the presence of the maximum number of addition theorems 
allows us to, in general, dispense with the assumption that the A's are global and linear, and thus 
allows one to invert the maximum number of addition relations when these are given in a purely local 
form. 

10 Here, we wish to mention a conjecture of Spencer Bloch to the effect that, on a surface S with 
geometric genus pg(S)=0, the Chow group C(V)~-Z .  He has verified this in numerous special cases 
including the Enriques and Godeaux surfaces-  c.f. Hartshorne's article referred to in footnote 7. Our 
preceding remarks about the maximal closed integral varieties possibly providing rational equivalence 
are very closely related to his conjecture. It is, however, premature to call our suggestion a "conjecture," 
as the following example and observations will point out. 

Thus far, our discussion about inverting the zero-cycle conditions in Abel's theorem has been 
centered around complete intersections, and we now give an example of inversion in a noncomplete 
intersection case. Let S c ~  3 be a smooth quartic surface with holomorphic 2-form o) inducing by 
(2.10) the differential form f2et22(S tn~) on the symmetric products. We consider the family {C} of 
rational normal curves C c ~  '3. These are cubic space curves, certainly not complete intersections, 
and any two are projectively equivalent. Thus the family of all such has dimension equal to 

dim(Aut0P3)) - dim(Aut0Pl)) = 15 - 3 = 12. 

By the remark in the paragraph preceding Equation (2.8), the trace 

~2~o(c. s)-0, 

where the sum is over the 12 = 3 .4  points of intersection of C and S. Letting F = C. Se  S a 2), the maximal 
integral varieties of O passing through F have dimension equal to 12 =�89 S a 2~), and this is exactly 
equal to the dimension of the variable zero cycles F '  = C'.  S for C' a rational normal curve. Con- 
sequently, 

I f  S c IP 3 is a smooth quartic surface and C c P 3 a rational normal curve, then a maximal  integral 
variety o f  t2* (S 02)) passing through F = C .  S will consist o f  intersections F' = C'. S where C' ~ lP 2 is a 
variable rational normal curve. 

So, once again, we have inversion of the conditions in Abel's theorem. 
It may be noted that our examples thus far have concerned surfaces with pg = 1. In case pg(S)> 1, 

say S has very ample canonical bundle, we should expect that the maximal closed integral varieties 
of Q*(S tn~) should have dimension <n, especially in view of (2.21). This is the case for purely local 

reasons, at least provided none of the points in F = ~ P~ is constrained to vary on a curve, in some 
v = l  

examples such as as a quintic surface in F 3. Moreover, in this case, a local integral variety of maximal 
dimension is automatically globally closed and gives a rational equivalence. 


