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(a) On a smooth algebraic curve C of genus g we consider a divisor D of
degree d. A classical problem is to determine the dimension 4A°(D) of the vector
space H°(D) of rational functions having poles only on D, or equivalently the
dimension r(D) of the complete linear system |D|=P(H%D)) of effective
divisors linearly equivalent to D. Denoting by K the canonical divisor, the
Riemann-Roch formula

r(Dy=d—-g+ h%K—- D)
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gives the answer in case D is non-special—i.e., h% K — D) = 0—but says little
for special divisors, which, as is well known, are usually the divisors that are
relevant to specific geometric problems. As a first answer to the question

what special linear systems may exist on C?
we have Clifford’s theorem
r(D)<d/2.

In a sense this answer is sharp, for on a hyperelliptic curve and for every d and r
with r < d/2 < g —1 there exist divisors that satisfy deg D = d and r(D)=r.
Hyperelliptic curves, however, are exceptional for g > 3, and so we still have the
question

what special linear systems exist on a general
curve of genus g

More precisely, we can ask how many linear systems of a given degree and
dimension there are on a general curve C in the following sense: Effective
divisors of degree d are parametrized by the dth symmetric product C, of C, and
linear equivalence classes of degree d by the Jacobian J(C). Letting C; and W
denote, respectively, the locus of divisors D of degree d with r(D) > r and the
image of C; in the Jacobian, we may ask:

On a general curve, what are the dimensions of
r sr
Cyand W}

It appears that the answer to this question was first suggested by Brill and
Noether [1], who asserted that on a general curve of genus g the dimension of
W, should be

p=g—(r+1)(g—d+r)
= h°%(K) — h%(D)h°%(K — D),

and the dimension of C] equal to p + r.

Assuming this is correct further interesting geometric questions arise: for
example, in those cases where p = 0 so that W} is a finite set of points we may
ask, how many? For general p > 0, since we have nice descriptions of that part
of the cohomology ring generated by analytic subvarieties for both the Jacobian
and symmetric product of a curve with general moduli, we may ask

What are the cohomology classes of the loci
Wi;CJ(C)and C; C C,?

Here we recall that the analytic cohomology of J(C), where C has general

moduli, is generated by the class # of the theta divisor  ~ Wgo_,, and the
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analytic cohomology ring of C, is generated by the pullback § = 7*0 of  under
the natural map = : C,—J together with the class x of the image X, of C,_, in
C, under the map D— D + p. With a view toward using the answer to this
question for solving enumerative problems, we may ask how C; sits in C,
relative to other naturally defined subvarieties; e.g.,

Does C meet the general subvariety
Xp’:f’mpﬁp =Cy_rsptpi+ - +p,,, transversely?
The answer to the above question is contained in the
MAIN THEOREM. (1) For any curve C of genus g
dmW;>p dimC;>p+r.
(IT) For a general curve (a)
dim Wj=p dimC;=p+r,
(b) The fundamental classes wy of W and c; of C; are given by
w;=MNg,r,d)g&"

r (-D%(g—d+r—1+a)
c;=>\(g,r,d)2( ) (g r )

xaé'g-—r—p—a

= al (r—a)!
where
r l.'
Ag, r,d)= - .
(8 r.d) ,BO (g—d+r+i)
©) If pys - - ., pry, are general points of a general curve, then the intersection
X,'P g, 0 Cj is transverse, consisting of
g+t i!

pl(g—d+2r+p)! ,.IJO (g—d+r+i)!
distinct points.

As mentioned before, the roots of this theorem are to be found in the classic
paper by Brill and Noether [2], who proved (I) assuming that W is non-empty.
This was deduced as a consequence of the above formula for the fundamental
class w;, which was proved in Kempf [6] and Kleiman-Laksov [8, 9]. In this
formula it is assumed that dim W) = p, and the multiplicities of the various
irreducible components of W are counted. Our main contribution is to establish
(II) which together with [6, 8, 9] implies that on a general curve W and C; have
the predicted dimension p and that all irreducible components occur with
multiplicity one. Here the case r = 1 was proved by Laksov [10], Lax [11], and
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Martens [12] and the case r = 2 recently by Arbarello and Cornalba. From the
point of view of this paper a crucial step was furnished by Kleiman [7], who
revived an old idea of Severi [14] to use a degeneration method of Castelnuovo
[3] to establish the dimension statement (I1a). In Kleiman’s paper it is rigorously
proved that the dimension count would follow from a transversality statement
concerning certain Shubert cycles associated to generic chords to a rational
normal curve, and in this paper we shall prove the transversality result which we
shall call the Castelnuovo-Severi-Kleiman conjecture. This proof will be given in
section 2, after we have given in section 1 a proof of the reduction of (I1a) to the
Castelnuovo-Severi-Kleiman conjecture; in section 3 we prove the refined
transversality /multiplicity-one assertions in IIb and c.

Throughout this paper, we will assume the results of Kempf-Kleiman-Laksov,
specifically the assertion that “The locus W) C J(C) (respectively C; C C,)
supports the cohomology class given in IIb,” which in particular implies that
W;#Q.

(b) There are a number of statements one can make about the geometry of a
general linear system D of dimension > r and degree d on a general curve C of
genus g, purely on the basis of part Ila of our main theorem and the behavior of
the function p(g,r,d). In the following, then, D will denote a general point of
Wi(C).

(1) |D| has dimension exactly r. This just amounts to saying that

dimW;*=g—(r+8+1)(g—d+r+39)
=g—(r+1)(g—d+r)—8(g—d+2r+1+39)
<g—(r+1)(g—d+r)y=dimW,.

(2) |D| is not composite, i.e., D cannot be written as the sum of two effective
divisors D,, D, with r(D,) + r(D,) = r. To see this, we simply note that for any
rnt+r,=rd+d,=d,

dide’l'+dide’22=g—(r,+l)(g—d|+r,)+g-—(r2+l)(g—a'2+r2)
=g—(r+1)(g—d+r)=r(dy—r)—r(d —r)

< dim W}

since (as long as d, > 0 and g > 0), d; > r,. Applying this in particular in case
r, =0, we may conclude that

(3) |D| has no base points.

(4) For r > 2, the map ¢, : C—>P" given by D is a birational embedding. This
follows not so much from our main Theorem as from the statement that a
general curve C of genus g > 2 cannot be expressed as a multiple cover of any curve
C’ of genus g’ > 1. This is readily seen from a count of parameters: the curve C’
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will depend on 3g’ — 3 parameters, and the m-sheeted covering C — C’ depends
on b parameters, where

b=2g—-2-m(2g —2)

is the number of branch points of the cover. Thus if m > 2, C will depend on
2g—2—(m—- %)(2g'—2)<2g—2<3g-—3

parameters, and so cannot be general.

We see from this that if ¢, maps C m-fold onto a curve C, C P", then C, must
be rational, and |D| composite with a pencil, contradicting (2).

In consequence of the above, we have the

COROLLARY. Forr > 2and g > (r + 1) g — d + r), a general curve of genus g
may be birationally embedded as a nondegenerate curve of degree exactly d in P".

This corollary may be applied to obtain information on Chow varieties, as
follows:

Suppose that = is an irreducible component of the Chow variety of algebraic curves
of fixed degree d in P". Assume, moreover, that the curve C, corresponding to a
general point § € Z has the properties (i) C, is non-degenerate, and (ii) C; is a
general curve of (arithmetic) genus g > 2. Then the Brill-Noether number

p=g—(r+1)(g—d+r)>0,
and the dimension of Z is given by
dim5=r2+2r+p+3g—3.

When r = 3—i.e., for space curves—this is
dim X = 44.

Finally, Z is reduced (more precisely, the corresponding component of the Hilbert
scheme is reduced).

The last statement will be proved in [1].

We mention here two further questions one may ask in regard to the “general
linear system” D above. First, one may ask for more information about the map
¢, in particular, is it the case that for r > 3 ¢, is a biregular embedding; and,
more generally, for C general, what will be the codimension in W of the loci
W), W, of linear systems |D| possessing a node, and a cusp, respectively?
[Some investigation tends to indicate that the naive estimates:

codimW, Cc Wy=r—2

codim W) Cc Wj=r—1
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hold—suggesting in particular that ¢, is indeed an embedding when r > 3.]
Another series of questions one may pose concern the multiplicative structure of
the linear system |D|, e.g., the ranks of the maps

¢, : Sym*HY(D)—> H(kD)
and
to : HY(D)® HYK — D)~ HY(K).

It has been proved that for D as above, the second map p, does have maximal
rank (to appear [1]); as for the first collection of maps—whose rank in effect
describes the postulation of the image curve ¢,(C) C P'—little is at present
known.

Finally, we mention here some restatements and /or special cases of part Ilc
of our main theorem. First of all, in case p = 0—i.e., g = (r + 1)(g — d + r)—we
see that by 1Ib a general curve C of genus g may be realized as a nondegenerate
curve of degree d in P in exactly g!A(g,r,d) ways. More generally, in case
p > 0. we may ask further that a given collection p,, ..., p,, o of points of C be
mapped into a hyperplane in P’; Ilc tells us that for p,, ..., p,,, € C general,
there exist exactly

(p+ntg o 1t
pl(g—d+2r+p)! =y (g—d+r+i)

nondegenerate maps C — P" carrying { p,} into a hyperplane.

Taking r = 1, we obtain in particular the statements:

On a general curve of genus g =2k, there exist exactly (2k)!/(k!(k + 1)!)
rational functions of degree k + 1, modulo linear functional transformations
f—>(af + b)/(cf + d) (cf. [10]), and in general:

For py, ..., p,4 general points on a general curve C of genus g =2k — p, there
exist exactly (p+ 1) 2k — p)!/[(k + D! (k — p)!] rational functions of degree
k + 1 with poles (resp. zeroes) at p,, . . . , p, .\, modulo transformations of the form

faf+ b (resp. [ f/(cf + d)).

(c) The most direct approach to the problem of determining the dimension of
C, is to simply write down the conditions that a divisor D =p, + - -+ + p,on C
move in an r-dimensional linear system. The Riemann-Roch formula suggests
that we examine the following matrix:

If z; is a local coordinate around p; and w,, . . ., w, a basis for the holomorphic
differentials on C, then locally around p,
Wy = fra(2) d2;.

According to the Riemann-Roch formula, r(D) > r if, and only if, the
Brill-Noether matrix

fulp) - flg(l’l)
apy=| z
Jfalpa) - fdg(Pd)
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has rank < d—r. (We remark that we are assuming that the points p, are
distinct, but it is well known that the symmetric product C, is a smooth
manifold and our considerations may be extended to cover the case when some
of the p, coincide.) More precisely, the ith row of the Brill-Noether matrix gives
the homogeneous coordinates of the point p; on the canonical curve C C P&~
Then

rankQ(D)=dimp, ..., p;— 1

where Py, .-, pg is the linear span of the points p, € P&~ (This is defined in
case some of the points p, are coincident, in part e of this section.)
Now the matrix (D) defines a holomorphic mapping

Q:A->M,,

from a coordinate neighborhood of A in C, to the space of d X g matrices, and
since the locus M, C M, of matrices having rank < d — r has codimension
r(g—d+r) we may conclude that if the inverse image C;=Q (M) is
non-empty then its codimension is at most that of M, in M,; i.e.,

Every component of C; has dimension > d — r(g—d+r)y=p+r.

This is the original argument of Brill-Noether, and it suggests that
Every component of W) has dimension > p.

(To completely justify this reasoning there is one technical point: While it seems
reasonable that the general fibre of C;— W has dimension exactly equal to r,
until the dimension of C; or W} is actually computed it is a priori possible that
W)= W;*', in which case the fibres of C;— W) all have dimension > r + 1.
This turns out not to cause trouble, as our approach will circumvent the matter.)

The next step in the analysis of C; was taken by Kempf [6] and
Kleiman-Laksov [8] and [9]. In the second Kleiman-Laksov paper the idea is to
compute the expected classes ¢; and w; by globalizing the above argument and,
finding the classes non-zero, to conclude that neither is empty. To explain this
briefly, we note that a change of holomorphic coordinates on C, has the effect
of multiplying on the left the Brill-Noether matrix by the Jacobian matrix of the
coordinate change. Consequently, (D) may be interpreted as the local
expression of a global section of 7*(C,)® C# where T*(C,) is the cotangent
bundle of C,. Now the locus where a given collection of sections of a vector
bundle E have a given rank is described by a polynomial in the Chern classes of
E by a special case of Porteous’ formula (cf. page 415 of [5]). Computing
everything out in this case gives:

The locus C; supports the cohomology class

N r L(g—d+r—1+a)! wfE—r—p—a
(g,r,d)(é:o(——l) al (r—a)! X"
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and is therefore of dimension at least p + r. Similarly, W supports the class
A(g,r,d)§%™* and is thus of dimension > p.
(d) We now come to the problem of establishing the dimension count

dim W = p *)

for a general curve C. The difficulty here is how to deal with a “general curve.”
It is certainly not the case that (*) is true for every curve: branched covers of P!
with small sheet number and smooth plane curves of degree > 5 provide
examples where p<O0 but W, is non-empty. On the other hand, by
upper-semicontinuity of dimension and the irreducibility of the moduli of curves
it will suffice to prove (*) for just a single smooth curve. This help is more
apparent than real: when g is large, for virtually every curve that we can actually
write down (e.g., complete intersections, plane curves with few singularities, etc.)
the dimension of W} is too large.

One way out of this apparent bind was suggested—albeit indirectly—by
Castelnuovo [3]. He was trying to compute the degree of W} in case p = O—i.e.,
g=(+1)g—d+ ry—and had the beautiful idea of specializing not to a
particular smooth curve but to a generic curve of arithmetic genus g having g
nodes—what we shall hereafter call a Castelnuovo canonical curve (here is the
picture of the Reimann surface of one of arithmetic genus 4).

N e ~

DRAWING 1

The linear systems of degree d and dimension r on such a curve C may then be
described as follows: We realize the normalization C of C as a rational normal
curve in P%. Any r-dimensional linear system on C then pulls back to one on ¢,
which may in turn be described as the series cut out by the hyperplanes in P4
having as base a (d — r — 1)-plane A. Such a linear system on C has the
additional property that every divisor of the system (that is, every hyperplane
through A) containing one of the points (p,,q,) (a=1,...,g) lying over a
node of C contains the other as well. Equivalently, A meets the chord 7,q,
joining the points of C lying over each node of C. Consequently, the linear
systems g; on C correspond to (d — r — 1)-planes A C P* meeting each of g
chords to a rational normal curve. Now the subvariety o,(/) of the
Grassmannian G = G(d — r — 1,d) consisting of (d — r — 1)-planes meeting a
line / C P4 is a Schubert cycle of codimension r on G, and so the expected
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dimension of the intersection (., 0,(P,q) is
dmG-—rg=(r+1)(d—r)—rg

=g-(r+1)(g=d+n)
-

Thus we hope for exactly oo” such (d — r — 1)-planes A meeting each of g
chords to a rational normal curve. In case p =0, if we assume that the cycles
0,(P.q.) intersect transversely on the Grassmannian then we may compute their
intersection number in G; this number, Castelnuovo suggests, should be the
degree of W] on a general curve.

Interestingly, Castelnuovo in his paper was interested solely in guessing the
degree of W; at that time the statement dim W, = p on a general curve was
considered an established theorem.! Indeed, it was not until Anhang G in [1]
that Severi first pointed out (in public) that the statement had in fact never been
satisfactorily proved and, looking for a means to remedy the situation, suggested
that Castelnuovo’s degeneration might afford a proof. The argument would
proceed in two parts: One would first use a specialization to conclude that, if the
dimension of W) on a general curve were strictly larger than p, then the same
would be true also for a general Castelnuovo canonical curve Cy. Then one
could rule out this possibility by representing W;(C,) as the intersection of a
collection of Schubert cycles as above and analyzing that intersection.
Unfortunately, Severi was unable to complete either part of his two-step proof,
and his idea lay dormant until Kleiman [7], using the techniques of modern
algebraic geometry, analyzed with complete rigor the behavior of linear systems
on suitably degenerating curves and established the first half of Severi’s
projected argument. The upshot is that parts IIa and b of the main theorem were
reduced to the following statement concerning the intersection of Schubert
cycles:

CASTELNUOVO-SEVERI-KLEIMAN CONJECTURE. [If, for any chord [ to a rational
normal curve C C P we denote by o(l) C G(k, d) the Schubert cycle of k-planes A
that meet I, then for generic chords the intersection

o(l)n - Nna(l)

It is interesting to go back and look at the original paper [3] of Castelnuovo, in which the idea of
studying linear systems on a general curve by specializing to a g-nodal curve first appears. Again, it
must be borne in mind that to Castelnuovo parts I and Ila of the main theorem above were proven
theorems; he was attempting to establish, in effect, a special case (p = 0) of part IIb. Nonetheless, he
seems to be aware of at least some of the difficulties involved in making precise the sort of argument
he suggests: in a footnote to the article in Atti Acc. Lincei (which was altered in the version
published in his Memoire Scelte) he points out that his argument is based “more on intuition (and on
various examples) than on a true mathematical proof”. He concludes by saying that “we allow
ourselves to use a principle as yet unproved in order to solve a difficult problem, because we believe
that such efforts may be of use to science, as long as we say explicitly what is suggested and what is
proved.”
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is almost everywhere transverse. In particular, it has no multiple components and its
dimension is

dim(a(/) N -+ No(L))=(k+1)(d— k) = g(d— k—1).

The purpose of the present paper is to complete Severi’s program by giving a
proof of this conjecture and thereby concluding the main theorem as stated
above. Our proof shows that the conjecture is in fact valid for any
non-degenerate irreducible local piece of complex-analytic arc in P

In section 1 we will examine the behavior of linear systems under a
Castelnuovo specialization and give an argument, within the framework and
from the point of view of this paper, of the reduction of the dimension-theoretic
part of the main theorem to the Castelnuovo-Severi-Kleiman conjecture. Our
analysis is more elementary but yields somewhat less information that that in
[7]; it is included here for the sake of completeness.

In section 2 we give a proof of the conjecture. Very briefly the idea is to
degenerate further by carefully letting the g chords come together. Put another
way, the main difficulty in the problem is what is meant by a general curve?
Since all rational normal curves are the same, the 3g — 3 moduli have become
the 2g — 3 moduli of g generic chords. By letting the chords come together we
eliminate all moduli or, more geometrically, we degenerate the Castelnuovo
g-nodal curve to a rational curve having one nasty but rigid singularity.

Finally, in section 3 we use the transversality statement to conclude the last
part of the main theorem.

In writing up the arguments in each of the two steps of the proof we have in
each instance given what were to us the crucial examples—that is, those special
cases that when properly understood showed how the general argument should
go.

(e) We now give some notations and terminology.

Throughout we shall use the word “curve” to mean a smooth non-
hyperelliptic curve of genus g > 3. We shall use standard algebro-geometric
notations—such as |D| for a linear system of divisors, K for the canonical line
bundle, etc.—all of which are the same as in [5]. Additionally we make the
following conventions:

(i) G(k, d) is the Grassmannian of P¥’s in P?; it is the same as the Euclidean
Grassmannian G(k + 1,d + 1) of C**"s in C/*!;

(ii) In section 2 we shall use /(p, q) to denote the Schubert cycle o,_, _,(pq) of
k-planes meeting the line pg; and

(iii) Finally, we shall frequently use without mention the well-known fact that
any rational mapping of a smooth curve to a Grassmannian is in fact
holomorphic: we embed the Grassmannian in projective space, and then the
map is given on the punctured disc 7z # 0 by

O =1/ fu()]

where the f,(¢) are holomorphic for ¢ % 0 and meromorphic at r = 0. We may
write f,(¢) = t*g,(¢) where all g, () are holomorphic at ¢ = 0 and some 2,(0)#0,
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and then
fO =180, -, g(1]

is holomorphic at the origin.

In addition, we want to introduce here one notion that will be used repeatedly
in the remainder of this paper: the multiplicity m,(C - A) of intersection of a
curve C C P" with a linear subspace A C P"” at a point p. This may be defined
either as the intersection multiplicity at p of C with a general hyperplane H C P”
containing A, or as the index at points over p of the pullback 7*/, of the ideal
of A CP" to the normalization C % C. The equivalence may be seen by noting
that the equation of a general H D A generates #*1, at each point of ¢ lying
over p. The intersection multiplicity clearly has the following properties:

1) If A’ D A, then m,(A" - C) > mP(A- C)

(i) If A" is a general plane of its dimension containing A, then
m,(A"- C) = m,(A - C), and

(iii) If A, is a family of planes in P”", the function

m(r) = mp(C “A)

is upper-semicontinuous.

In what follows, we will often use the notion of intersection multiplicity
implicitly. Thus, for example, by a d-secant plane to a curve C CP" we will
mean a plane A such that

S m,(C- A) = d;
P

if we fix a plane A C P” and a hyperplane H D A not passing through any of the
singularities of C, “the divisor cut on C by H residual to A” will mean the
divisor

%(mp(C- H) -~ mp(C-A)) - p.

Finally by the span mi,py, . .., m_p, of a linear combination > mp, of points
P € C we will mean the smallest plane A C P” such that for all «

m, (C-A) > my;

or, equivalently, the intersection of the hyperplanes satisfying this condition. It is
worth pointing out that if the points p are not inflectionary on C—as for
example will always be the case if C is a rational normal curve—then this is just
the span of the osculating (m, — l)-plane to C at p,, the osculating
(m, — 1)-plane to C at p,, and so on.

It is a pleasure to thank Enrico Arbarello and Maurizio Cornalba, with whom
we worked on the problem from a cohomological viewpoint, related to the
second interpretation given above of the Brill-Noether number. These results,
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which among other things give the infinitesimal behavior of special linear
systems under a variation of structure of the curve, will appear in a monograph
that is currently under preparation. In addition, conversations with Steve
Kleiman, Ron Donagi, and Mark Green have been extremely helpful.

Finally, we would like to thank the referee of this paper for a number of very
valuable suggestions.

1. Reduction of the dimension count to the conjecture

(a) We consider here the specialization argument. The basic principle we
would like to apply states that under any proper holomorphic map f: X = Y, the
dimension of the fibre is an upper-semicontinuous function on Y. Now the loci
W;(C) of linear systems on a variable smooth curve C fit together nicely to
form a closed subvariety ¢, of the Jacobian bundle ¢ over the moduli space of
smooth curves. (This is intuitively clear; since these are just heuristic
considerations we will not give a formal proof.) Thus there is no difficulty in
applying this principle to smooth curves: the dimension of Wj(Cy) for any
smooth curve is consequently greater than or equal to dim W}(C) for a generic
curve of the same genus. To use this line of argument with respect to a
Castelnuovo canonical curve, however, means that we need to complete ¢, to a
variety proper over a subvariety of moduli containing Castelnuovo canonical
curves. Now, as is fairly well known, the Jacobian bundle extends naturally to
these degenerate curves; line bundles and/or linear systems on Castelnuovo
canonical curves are parameterized by its generalized Jacobian J(C,) = (C*)5,
which fits nicely into the family of Jacobians over moduli of smooth curves. The
family ¢/, likewise extends to a closed subvariety of the extended Jacobian
bundle over Castelnuovo curves, if we take as fibre W;(Cy) over such a curve
the set of linear systems as described above—i.e., linear systems on the
normalization C = P! of C,, every divisor of which contains one of the two
points p,,q, if and only if it contains the other. The problem is that the
generalized Jacobian of C,, and likewise the fibre of §/, over Cj, is not compact,
so that the principle of upper semicontinuity does not hold. For a concrete
example one may imagine a family of elliptic curves acquiring a node

DRAWING 2
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As generic linear system we take the g, of lines through a point p € C, where
under the specialization C — C, the point p tends to the node p, of C,. The
points residual to p, in the pencil of lines through p, do not describe a linear
system in the above sense on the nodal cubic. Of course this particular example
can be overcome, but the phenomenon it illustrates requires attention. Put
another way, if C, is a family of smooth curves specializing to a Castelnuovo
canonical curve C, and |D,| = {D,,},cp a linear system on C, for ¢ % 0, then
the point u(D,) in the Jacobian J(C,) will tend to infinity—i.e., may not have a
limit—in the generalized Jacobian J(Cy) in case the limiting system of divisors
{Dy,»} has a base point at one or more of the nodes of C,. This raises the
possibility that an entire component of W;(C,) may disappear in the limit.

One way around this difficulty is by constructing a suitable compactification
of the generalized Jacobian J(Cy) to a complete variety J(Cy) such that the
corresponding family § is proper over the compactified moduli space of curves.
One may then close up ¢/, so as to insure the existence of a specialization
Wi(C)—> Wj(Cy), and then the new data obtained in the limit must be
analyzed. This is the method employed by Kleiman [7], and in a sense is the
most natural approach to the problem.

The approach taken here will be based on synthetic geometry: rather than
compactifying the family Wj(C) for singular curves C as above, we will
compactify the locus of associated special secant planes to the canonical curves.
In fact, since we are then dealing with subvarieties of the Grassmannian the
compactification already exists, and it is our task to interpret geometrically what
we get. This whole approach is motivated by the geometric version of the
Riemann-Roch theorem, that says that a divisor D = > p; on a canonical curve
C C P87 ! moves in an r-dimensional linear system if and only if the span of the
points p; is a (d —r — l)-plane. Every divisor D with A%(D)=r+1 thus
corresponds to a d-secant (d — r — 1)-plane to C, and since every linear system
of degree d and dimension r contributes co” such planes we see that part Ila of
the main theorem stated in the introduction will follow once we establish that

the locus 2 C G(d — r — 1, g — 1) of d-secant (d — r — 1)-planes to a general
canonical curve C C P"~" has dimension p+ r=g— (r+ 1)(d — g+ r) + r.

™)
The remainder of this chapter will be devoted to showing that (*) follows from
the Castelnuovo-Severi-Kleiman conjecture. To do this, we let C, be a general

Castelnuovo canonical curve, {C,} any l-parameter family of canonical curves
(generally smooth) degenerating to C,,” and consider the intermediate statement

The locus 2 C G(d — r — 1, g — 1) of d-secant (d — r — 1)-planes to C, **)
not passing through any of the nodes C, has dimension at most p + r.

2The existence of such a family, given C,, is established in [7].
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We now argue in two steps: we first show, in parts (b) and (¢), that
CSK = (**);
and then in part (d) that
(**)=()-

(b) For the first part we shall recount some definitions pertaining to
Castelnuovo canonical curves. Such a curve C; is obtained by identifying g pairs
of points p, and g, on the Riemann sphere P'. A rational function that is regular
at the nodes is given by a meromorphic function f(¢) on P' such that f(p,) and
f(q,) are finite and equal. We will be concerned primarily with divisors D on C,
that are supported away from the nodes; two such divisors D and D’ are linearly
equivalent if there is a rational function f on C, regular at the nodes with
(f)= D’ — D. A linear system on C, is a family of effective divisors of the form
{D + (f)} where f varies in a vector space of rational functions on C,. As in the
case of smooth curves we may describe linear systems geometrically as follows.
If C, C P"is an embedding and A C P" any linear subspace that is disjoint from
the nodes then the residual intersections of C, with the hyperplanes in P’
containing A form a linear system.

An abelian differential on C, is a meromorphic 1-form w on P! that has at
most first order poles at the points p,, g, and satisfies

Res, () + Res, (w) = 0.

There are g linearly independent abelian differentials on Cy: If 7 is a Euclidean
coordinate on P! they may be taken to be

dt
%)

where A, = t(p,) and X, = 1(q,).
As for smooth curves we may consider the canonical mapping

dy 1 Co—>PE!
given by
1=>[w(0), ... w0 ()]

This map extends across the nodes, and again as for smooth curves the
canonical mapping will be an embedding unless C, is a hyperelliptic
Castelnuovo canonical curve. (These may be described as follows: In terms of a
suitable Euclidean coordinate r we have

HPa) = —1(4) = A,
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for all a, then the differentials are

dt
12— A2

w, =

and the canonical mapping ¢, factors through the involution ¢t — — ¢). Since for
a general collection of 2g > 6 points p, on P' there are no automorphisms
permuting the p,, we see that again just as for smooth eurves a general
Castelnuovo canonical curve of genus greater than 2 is non-hyperelliptic. We
shall assume this to be the case, so that ¢, is a biregular embedding.

For a divisor D = s, + - - - + 5, supported away from the nodes we define the
index of speciality i(D) to be the dimension of the space H° K — D) of abelian
differentials on C, that vanish at the points s;. Equivalently, if D c P& !is the
linear span of the points ¢(s;) then

dimD=g—1—i(D).

For Castelnuovo canonical curves we have the elementary
Riemann-Roch theorem: The dimension of the complete linear system |D| of
divisors linearly equivalent to D is given by

r(D)y=d—-g+i(D)
or, geometrically,

dimD=d—1-r(D).

Proof. Let ¢ be a Euclidean coordinate on P! with ¢(p,) = A,, t(¢,) =A., and

1(s;) = . We take the abelian differentials w,, ..., w, as above. A rational

function on P' with poles at the points 5, may be written as
bi
t—py

f()y=by+ 2
This function will be a rational function on C, if and only if
fO)=fX)  a=1....g
This is equivalent to
b

b, i
0=§i: >\i_0u‘i_§i: N

s b(A = \,) 1
= ~ a=1,...,g;
= (1= A (1 — A &

1
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i.e., we must have

b.
d = a=1,...,
2 (=N 8
which is the same as
2 bw,(p)=0 a=1....¢ O

The geometric Riemann-Roch theorem may be restated as follows:

If C,C P2~ ! is any Castelnuovo canonical curve and D=p, + --- + p, a
divisor on C, supported away from the nodes, then the complete linear system
|D| has dimension r if and only if the points p, span a P~"~ !,

(c) We can now easily establish the

LEMMA 1. Assuming the Castelnuovo-Severi-Kleiman conjecture, the family of
d-secant (d — r — 1)-planes to a general Castelnuovo canonical curve C,C P8™!
not passing through any of the nodes of C, has dimension at most p + r.

Proof. By the geometric Riemann-Roch theorem for Castelnuovo canonical
curves, a divisor of degree d on C, supported away from the nodes and spanning
a (d — r — e — 1)-plane in P&~ moves in an (r + €)-dimensional linear system.
Again we realize the normalization C = P' of C, as a standard rational normal
curve of degree d in P? then our linear system is cut out by the system of
hyperplanes H C P containing a fixed (d — r — € — 1)-plane A that meets each
of the g chords to C~'0 joining pairs of points lying over the nodes of C,.
Assuming the Castelnuovo-Severi-Kleiman conjecture, the family of such linear
systems is parametrized by the A’s as above, and it has dimension exactly

g—(rt+e+1)(g—d+r+e).
Accordingly the family of all such divisors on C, has dimension

g—(r+te+l)g—d+rt+e)+r+e=p+r—e(g—d+2r+e).

Finally, since every such divisor gives rise to co®8~9*" d.secant (d — r — 1)-
planes and every d-secant (d — r — l)-plane to C, supported away from the
nodes contains such a divisor for some € > 0, we see that the dimension of the
family of such planes is at most

maxp+r—e(r+e)=p+r. |
€20

As a corollary to this lemma we have the slightly stronger

Lemma V. If p,,...,ps are among the nodes of a generic Castelnuovo
canonical curve Cy, then the family of (d — r — 1)-planes through p,, . . ., ps and
meeting C in a total of d + & points (counting multiplicity) has dimension at most
g—(r+1)g—d+r+r-24.
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Proof. The basic remark is that if C, is generic—so that the nodes on C,
correspond to g pairs of generic points on P'—then projection from the P°~!
spanned by the points p,,...,ps maps C, to a generic canonical curve
EO C P& 1% of genus g— 8. The projection also maps the (d + 8)-secant
(d — r — 1)-planes through p,, . . ., ps bijectively to (d — §)-secant (d —r — 6 —
1)-planes to 60,3 and applying lemma 1 this family has dimension at most

g=8—(r+1)(g—=98)—-(d—8)+r)+r=g—(r+1)(g—d+r)+r-24.

(d) With this established, we can now show that Ila in the main theorem
follows from the Castelnuovo-Severi-Kleiman conjecture. The conclusion of the
following discussion is stated at the end of this section.

To set up, let C, be a family of canonical curves over a curve with local
parameter ¢, with C, smooth for ¢ = 0 and C, a Castelnuovo canonical curve. Let
2, CG(d—r—1, g—1)be the locus of d-secant (d — r — I)-planes to C,, and =
the closure of the incidence correspondence

s=TWLA) :AES, 1#0}.

2, will denote the fibre of = over 0.

At the same time, we consider the secant planes associated to the dual series;
that is, we let =) C G(e — s — 1, g — 1) be the locus of e = (2g — 2 — d)-secant
(e —s—1)=(g— r—2)planes to C,

={(tN):A€Z, t+0}
and 2 the fiber of 2’ over 0. We note that since dim W = dim W, we have
dimZ, > g—(r+1)(g—d+r)+r
and
dimZ; > g—-(s+1)(g—e+s)+s
=g—(g—d+r)(r+)+g—d+r—1

and that it will suffice to prove equality in either of these inequalities.

3That for any A € P&~ ! through py, ..., ps,
#(m(A) - Co) = #(A - Co) ~ 28

follows from the fact that the intersection multiplicity of the plane P®~! =%, 777, 5; with C at each
pi is exactly 2. (This in turn follows from the fact that the projection map—the map given, if you like,
by the linear system of differentials on C,, vanishing at p,, . . . , p,—embeds the normalization C, of
Coatp,, ..., ps as a Castelnuovo canonical curve in P§~81),



250 PHILLIP GRIFFITHS AND JOSEPH HARRIS

We see first that, counting multiplicity, every plane A € X is at least d-secant
to C,. Consequently if a generic A € 2, did not pass through any of the nodes
of C, we would be done: by the principle of upper-semicontinuity and lemma 1
we would have for generic ¢

dim 2, < dim £,
Sg—(r+1)(g—d+r)+r.

The question then is, can it happen that every plane A € £, passes through one
or more of the nodes of C,; and if so, what can we say about the remaining
points of intersection of A with C,?

An example should help to clarify the sort of phenomena that may be
expected. Consider a smooth canonical curve C C P? of genus 4. Such a curve is
the transverse intersection of a quadric surface Q C P* with a cubic §; assume
that Q is of rank 3, i.e., a cone over a plane conic. C will then possess one g;,
with trisecant lines the lines of the cone Q. Now let the cubic surface S vary in a
pencil {S,}, with S, simply tangent to Q at four points so that the curve
Cy,= 0 N S, is Castelnuovo. This is a nice degeneration: as C, = Q N §, moves
toward C,, the actual locus 2, of trisecant lines remains fixed; in the limit the
generic line avoids the nodes of C,, while four lines pass through the nodes and
meet C, once elsewhere.

Suppose, on the other hand, we take S, a pencil with S, passing simply
through the vertex of C, and tangent at three other points. Again, C, acquires
four ordinary nodes; but now we see that, in the limit, all the trisecant lines pass
through the node of C at the vertex of Q. Thus it is possible—at least in some
families—that the planes of X, all contain a node of C, (note, however, that by
virtue of the requirement that Q be singular this is not a generic degeneration,
and C, not a generic Castelnuovo canonical curve). We observe one peculiar
phenomenon: while in the first case the four trisecant lines passing through the
nodes of C, met C, residually in only one point, in the second case, where every
trisecant line passes through a node, the general one still meets C, residually in
two points.

This last observation turns out to be the crucial one: in general, if the general
plane A € Z; contains § nodes p,, ..., p; of Cy, then the total intersection
number of a general A € 2, will be at least d + 6, that is, A will still meet C,
d — 6 times away from the nodes (or with higher multiplicity at the nodes).
Informally, we may say that each node “counts only once” in the sense that, as
A, tends to A,, the node p; will absorb (i.e., be the limiting position of) only one
of the d points of intersection A, N C. To see this, we have to look at the
behavior of the two families =, and X} together.

The proof of the geometric Riemann-Roch theorem ([5] p. 248) shows that =,
and X are closely intertwined:
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<y AN
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Precisely, we see that every hyperplane H C P~! containing a plane A € =, will
also contain a unique plane A’ €Z;, and vice-versa. This being a closed
condition on the pair of subvarieties 3, CG(d—r—1, g— 1) and 3, C G(g —
r —2, g — 1), it holds as well for the two limit families =, and Z{. Note that the
irreducible components {Z, ,} and {2 ,} of £, and Z{ are thereby in
one-to-one correspondence,* with every hyperplane containing a plane A of one
component of 2, containing a plane A’ of the corresponding component of Zg.

Now, suppose that every plane A of some irreducible component Z, , of =,
passes through some of the nodes, say {p,, ..., ps}, of Cy. If A’ is any plane of
the corresponding component Zj , of Zj, then it follows that every hyperplane
through A’ contains some A €ZX,, and hence contains {p, ..., ps};
consequently every A" € 3 | must also contain {p,, ..., ps}.

Now, for every pair of planes A, €Z,A; €3, lying in a hyperplane
H,C P& ! the sum of their points of intersection with C, comprise the
hyperplane section H,C C,, and the same is true of a pair of planes

“Explicitly, this may be seen by considering the incidence correspondence
I CZyx P8~ x5
defined by

I={(A,H,AN): AN CHY};

the fibers of the projections I— =, I - = being projective spaces PE~9+7~1 and P’ respectively,
the irreducible components of I are simultaneously in one-to-one correspondence with those of 2
and Zj.
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ANEZ, ., N EZ , lying in a hyperplane H,.> We have then
> m(H-Co)=#(H- Co)
PEH-Cy
=2g—2,

and so to count the total intersection numbers d and & of general planes
A €2, , and A" € 2§ , with C, we must relate the multiplicities m,(A - Co) and
m, (A" Co) to m,(H - Cp) at every pointp € H - C,.

To do this, let us first assume that p is any base point of the family
{A€Z, ), or equivalently of the residual family {A" € Z; ,}. Suppose that m,
is the intersection multiplicity at p € C, with a general A € 2, ,—i.e.,

m, = An;izl?a(mp(A : CO))’

and define m; similarly; suppose that m, > m,. If A€Z, , is a general plane,

’

H C P&~ ! a general hyperplane containing A, and A’ € X, a plane of the
residual family lying in H, then

m, = m,(A - Co) = m,(H - Cy)
m,(H - Co) > m,(A" - Co) > m,.
It follows that
m, = m, = m,(A - Co) = m,(A"- Cp) = m,(H - Cy).
In particular, for any base point p
m,(A - Co) + m (A - Co) > m,(H - C),
and in case the base point p is a node
m,(A - Co) + m, (A - Co) = 2m,(H - Cy)
> m,(H - Cp) +2. *)
Now let A, H, and A’ be as above and consider any point g € H - C, other

than a base point of the families =, , or 2 . If ¢ € A, then since H is a general
hyperplane through A

mq(A - Co)=m,(H - Co)

>The point here is simply that, since the incidence correspondence
I={(t,p): peHNC)
is flat over the t-curve, the complement of the fiber I, over ¢ = 0 is dense in I; the subvariety

J={(t, p): pE(AUA)INC],

being closed, then contains /.
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while if ¢ € A’ then since ¢ & A and H is general through A we have by Bertini’s
theorem

m,(H - Co) = 1.
Since a priori m,(H - Co) > m,(A"- Co) this gives
m, (A" Co) = m,(H - Cy),
and consequently: the relation
m,(A-C)+m,(A-C)>m,(H-C) **)
holds for every point p of H N C.
There is one more remark to be made here: that A’ as chosen above is a

general point of Zj . To see this, note that since the fibers of the incidence
correspondence

Z={(AAH):ACH)}CZ, xPs™!"

over Z, , are all projective spaces of dimension g — d + r — 1, Z is irreducible
and (A, H), as chosen above, is a general point of Z. Then since the
correspondence

Y={(AH;N):NCH)CZXZ,

surjects onto X ,, the inverse image in Y of any (Zariski) open set in Z
dominates X ,; so A’ is general in X .
This said, we have

J=%mp(A- C) é=%mp(A’-C)

and applying (*) and (**) to the double base points of 2, , and the remaining
points of H C C, respectively, we have

2g—2=%mp(H~C)

<3 m(A-C)+m(N-C)=28
peEC

=d+e—20.
It follows that either
d>d+8 (1)

or
e>e+d. Q)
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But assuming the conclusion of lemma 1’, (1) leads to
g—(r+1)(g—d+r)+r<dimZ,
<dim X, ,
Sg-—(r+1)(g—d+ry+r—29,
and likewise (2) gives
g—(r+1)(g—-d+r+y—d+r—1<dimZ]
< dim Zg
<Sg-—-(r+)(g—d+ry+g—d+r—-2-24.

Our conclusion, then, is that if the Castelnuovo-Severi-Kleiman conjecture
holds, then dim W;(C,) = p for the general element of our family C, of curves;
and since dim Wj(C)=p for a single smooth curve C implies the same
statement for a general curve, we have proved the

REDUCTION THEOREM. Assuming the validity of the Castelnuovo-Severi-
Kleiman conjecture, the dimension of W) on a general curve of genus g is exactly
the Brill-Noether number

p=g—(r+1)(g—d+n)

2. Proof of the Castelnuovo-Severi-Kleiman conjecture

(a) Before attempting to establish the conjecture in general, let us consider the
first non-trivial case, the dimension of the locus W, of pencils of degree 3 on a
general curve of genus g. Specializing to a general Castelnuovo canonical curve,
it suffices by the above to determine the dimension (and degree) of the family of
lines in P? meeting each of g generic chords to a twisted cubic curve C C P°. Of
course, the statement that we are after for linear systems—that on a general
curve

dim W] =g—-2(g—-3+1)

=4-g,
and in particular that on a general curve of genus four W, consists of exactly
6* _ 4
I = —_— = —— ==
A TR TR

points—is well known, but we want to discuss how the statement for lines in P>
may be proved.

Now, the Grassmanian G(l,3) of lines in P is 4-dimensional, and the
Schubert cycle o,(/,) of lines meeting a given line /, has codimension one



VARIETY OF SPECIAL LINEAR SYSTEMS 255

—indeed, o0,(/,) is the tangent hyperplane at /, to G(l,3) under the Plicker
embedding as a quadric in P°, It then obviously is the case that for generic lines
Ly... b in P3 the locus o, (/) N -+ - N 0,(/,) of lines meeting them all will have
dimension 4 — g if g < 4 and will be empty if g > 5. The question is whether this
will continue to hold if /, . . ., [, are constrained to be chords to C.

The answer in this case may be obtained directly: we note that if /|, /,,/; are
three skew lines in P, then there is a unique smooth quadric Q containing them.
(There is a quadric containing them, and it must be smooth if the lines are
skew.) The three lines will all be elements of one ruling of Q, and will be met by
any line of the other ruling; conversely any line meeting all three has three
points of intersection with Q, and so must lie in Q and be a member of the
second ruling. Thus if I,,1,,l; are any three skew chords to C, the intersection
a(l)) N a(ly) N o(ly) will be the other 1-dimensional family of lines ruling Q. Since
the chords to C fill out P?, moreover, a generic fourth chord /, to C will not lie
on Q. The only lines meeting /,, . . ., /, will thus be the lines of the second ruling
of Q passing through one of the points of /, N Q; and so dim(Na,(/,))=0.
(Indeed, with a little more care one can show that a general /, will meet Q
transversely in two points, so that

o ()N - Nay(ly) =2

which, together with Section 1 above gives the world’s hardest proof of the
well-known fact that a general curve of genus 4 possesses two distinct g3"s.)
Finally, since a general fifth chord /; to C will not meet either of the lines
meeting /,, ..., /, (no line in P?> meets all the chords of C), we see that
o (l)N --- Nol)is empty, as desired.

Unfortunately, this sort of direct analysis fails in more general cases. In
particular, in the above discussion the Schubert cycles o,(/,) are all of
codimension 1 (as will in general be the case when r = 1) so that it suffices to
show that dima, (/)N --- N 0,(f,) is strictly decreasing with g, i.e., that for
general [, the cycle o,(/,) contains no component of a general 6,(/) N - -+ N
0,(/,_)- (Indeed, a nice direct proof of the conjecture in case r =1 is given by
Laksov in [10].) A particularly bad sign for generalizations of this argument is
the fact that the statement may in fact fail even if the chords are not in
“obvious” special position: by choosing a quadric Q containing the twisted
cubic C and choosing lines from among the ruling meeting C twice (C will meet
the lines of one ruling of Q once, and the lines of the other ruling twice) we can
find an arbitrarily large set {/,} of chords to C, all mutually skew, such that

dim (o, (L) =1.

We look, accordingly, for other approaches to the problem in P?. One
possibility that suggests itself is to parrot a popular 19th-century method of
computing enumerative formulas in the Schubert calculus by specialization. To
determine the intersection number o} in G(l,3), for example, one could take
four lines /, with /; meeting /, and /; meeting /,; one then sees directly that there
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are exactly two lines meeting all four /,, namely the line /, N /,,/; N [, joining
the two points of intersection and the line /,,/, N/;,/, of intersection of the
planes spanned by the line in pairs. As a technique for computing o} this is
suspect—one has still to determine that the Schubert cycles o,(/,) associated to
the four lines in special position intersect transversely—but for our present
purposes, and given our prior knowledge that of = 2 in G(l, 3), it is ideal: Given
four general chords /, to a rational normal curve in P?, we may just as readily
specialize to the case /,N/,=p, ;NIl,=gq and, noting that under the
specialization the four Schubert cycles o,(/,) meet in 2 distinct points—hence
transversely—conclude that the o,(/,) meet transversely for general /,.

There are, at first glance, some difficulties with this approach in general. To
illustrate, suppose we wanted to show that for generic points p,q,r,s € C the
two Schubert cycles 7(p, 9) = o,_,_(pg) and 7(r, s) = o,_, _ (75) of k-planes in
P4 meeting the chords pg and 75 intersected transversely almost everywhere. One
way to go about this would be to specialize to the case p = r, i.e., where the two
chords share a common point of the curve. This does not appear to work: the
intersection of the two Schubert cycles 7(p,q) and 7(p,s) consists of two
irreducible components, the cycle o,_, _, ,_,_(p,q,s) of k-planes having a line
in common with the 2-plane p,¢,5, and the cycle o,_,(p) of planes containing
p; the latter has codimension d — k <2-codimo,_,_, when kK <d—2. On
closer inspection, however, the argument does work: the point is, letting the
point r vary in C, we want to consider not the intersection of the limiting
positions of the Schubert cycles 7 = 7(p, ) and 7(r) = 7(r,s) as r tends to p, but
rather the limiting position of the intersection 7 N 7(r). Precisely, we denote the
Grassmannian G(k,d) by G and let £ C G X C be the closure

Z={(Air)y:Aernr(r),r#p)

and consider the fiber 2, of 2 over p. Suppose (A, p) € z, is the limit of a
family {(A,,r) € Z,}. Then since A, meets both pg and 7s, and has a line L, in
common with the 3-plane pgrs for each r, we see that A = A, must meet both pg
and ps and have the line L,=lim,, L, in common with the 3-plane
2p;q,s =lim,_,, p,;q,7,5. The fiber 2, is thus contained in (in fact, equal to) the
union of the Schubert cycles o,_, | 4, (P.4,5) and 6,_, ,_,_Ap:2p,q,s),
each of which has codimension 2d — 2k — 2 =2 - codim 7. Indeed, something
more emerges from this argument: in view of the identity

2
(Ou—k=1)" = Oy—tta—k-1F Oy a—k—2

in the cohomology ring of the Grassmannian and the independence of the two
cycles on the right, we may conclude that the general fiber 3 = 7(p, g) N 7(r,s)
has no multiple components: every fiber of 2 has class o, ,_| ,_,_, +
04k a—k—2> SO that the central fiber 2, having support contained in the union
of two such cycles, must in fact be equal to these two cycles, each taken with
multiplicity 1. The locus of r for which 2, has a multiple component being
closed, we see that it is a proper subvariety of C.
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This procedure may be carried a few stages further. For example, to show that
the intersection of Schubert cycles 7(p,q), 7(r,s), and 7(u,v) is generically
transverse, it suffices to show this for the intersection of a general 7(u, v) with
each of the cycleso, _, _, ;. (7,q,5) and 6,_, ,_,_(p;2p,q,s). This may be
done similarly, by letting the point u tend to p and identifying the limiting
position of the intersection in each case as a union of Schubert cycles. A
technical difficulty soon arises, however: the Schubert cycles obtained in the
limit become progressively more complicated, and the degeneration is hard to
keep track of in general. What seems required to carry out this idea is that we
find a flag V=V,C V,C--- CV,_,CP?and a suitable degeneration of a
chord gr to C, such that the limiting position of the intersection o,(V) N 7(gr)
under the degeneration is identifiable as a union of Schubert cycles, again of the
form o, (V).

The flag which will serve this purpose is the osculating flag to C at p,° that is,
the flag comprised of the osculating spaces V;=(i + 1)p to C at p, and the
Schubert cycles will be general Schubert cycles defined relative to this flag: for
any collection of integers d —k > ay> a, > --- > a, > 0 (which we call a
Schubert index set a), we let

o (p)={A€ECG:dmAN(d—k+i—a + 1)p>iforalli}.

The process of degeneration to be used here involves two steps. For example, if
we want to show that the cycle a,_, _; ,_,_(p) of k-planes meeting the tangent
line 2p to C at p and having a line in common with the osculating 3-plane 4p
intersected the cycle 7(q, r) in the right dimension for general ¢ and r, we would
first let r tend to p. Formally, this means we set

2 ={(Asr) A€o0y y_ru—i-op) N T(g:1)r #p} CGXC

and consider the fiber Z(q),J over p. As before, if any A € 2(q), does not contain
the point p, then we see it must have a line in common with the plane 2p, g and
a 2-plane in common with 4p, g, i.e.,

dlmADZ > 1
Aeﬂo(q)={ AL }

d1mAﬂ4p q

If, on the other hand, A does contain p, we may list the conditions A satisfies as
follows:

A3p
dimAN3p,q>1
dimAN4p > 1
dimA N Sp,q > 2.

SWe observe that these osculating spaces already appeared in the above example.
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The locus of such A does not, unfortunately, look much like a Schubert cycle.
In fact, it is not—but it is the union of two Schubert cycles. To see this, we ask
one crucial question: what is the dimension of A N3p? If it is 1 or more, then we
see that A lies in the Schubert cycle

A>p

Q(q)=1{A:dimAN3p>1
dimA N 5p,qg >2

If, rather, A meets the osculating plane 3p to C at p only at p, then from the
condition dim A N3p, ¢ > 1, it follows that A must have a point ¢, lying outside
3p. in common with the 3-plane 3p, g. We see moreover that / must lie outside
the plane 4p as well, since if ¢ lay in 4p, the 3-plane 3p,7 would lie in, hence
equal 4p and we would have ¢ €4p. Thus the point 7 is a point of intersection of
A with 4p, g not lying in 4p, and so

dimAN4dp,qg >dimANndp +1
>2

A>p
AEQ(g)={A: . N .
dmANd4dp,qg>2
Now we are set to complete the degeneration. Letting

={(Ag):AEZ(g), . 9%p);

we see that the fiber of = over p is contained in the union of the three Schubert
cycles

Q= O4k—tid—k—1.d—k—2(P)

{A‘dimAn$>1
"dimAN3Sp>2

=04k a—k-1.a-k-3(P)

A3 p
A:dimAN3p>1
dimAN6p>2

and
=04 g ak-2.a-k-2P)

_ A'ABP
|7 dimANTSp >2
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all of which are of the right codimension
3(d—k)—4=codimo,_,_, ,_ . ,(p)+ codimr(q,r).
We have then for general g, r
codimo, 4 r—o(p) N 7(q,7)

> codim Z(q),
> codim 2,
=3(d—k)—4
as desired.
(b) This, then, is how the proof goes: we specialize each of the chords g7, into
p one point at a time, exhibiting the limiting position of the intersection of the
Schubert cycles 7(q,,r,) after “swallowing” each chord as the intersection of the

remaining cycles 7(q,,r,) with a union of Schubert cycles of the form o,(p). To
formalize this we will prove the

LEMMA. For {p,q,,r,} a generic collection of 2g + 1 points on C, and for any
Schubert index set a, the intersection

o, ()N T(qir) N - N T(qy,ry)

is of dimension
dmG - > a—-g(d—k—-1)=(k+ 1)(d—k)—Sa—-g(d—k—1),

and has no multiple components. It is understood that the intersection is empty in
case the dimension is negative.

Proof. The proof will be by induction on the number g of chords. Before
beginning, we make one observation: if a,=d — k—that is, if every plane
A € 0,(p) contains p—then projection 7 from p to a hyperplane P4~! maps C to
a rational normal curve C in P?"!, .7, to a generic chord of C, and o,(p)
isomorphically to the Schubert cycle o, o (7(p)) C G(k — 2,d — 2). Thus we
assume the result as stated for g chords and prove it for g+ 1 chords with
a,< d- k.

This said, set (g,r) and (q,,r,) be g + 1 generic pairs of points on C; denote
by 7 the intersection 7(q,, r) N - -+ N 7(qy, 7p)-

We consider first the limit of the intersection ¢,(p) N 7 N 7(q,r) as r tends to
p; that is, we set

(@)= {(Ar)y: A€o, (p)NnTNT(qr),r#p} CGXC

and look at the fiber 2(g), of Z(q) over p. Let A, be any point of 2(g),, and let
ig be the largest integer such that

dmAN(d—k+i—ag+2p>i+l *

for all i < i,, adopting the convention that a_, = d — k in any Schubert cycle.



260 PHILLIP GRIFFITHS AND JOSEPH HARRIS

We can then find a point 7 in the intersection A, N(d — k + i, — a; + 2)p, q not

contained in (d — k + i, — a; + 2)p. Moreover, ¢ cannot lie in the osculating
plane mp for any m < d: since q €(d — k + iy — a; + 2)p, 1, this would imply
q Edp. Thus, for i > iy, we have

dimA, N(d—-—k+i—a+1)pg>1+dmA,N(d—k+i—-a+1)p
>i+ 1
All in all, then, we see that A €, (¢) N 7, where

dmAN(d—k+i—a+2p>i+], i <
Q(@)=A:dimAN (d—k+iy—a +2) >
dmAN(d—k+i—a+1p,g>iy+1, i>i

iy + 1

We note that in case a,,, = a;, we have @, C @, , thus
Ap,c U wupnr
ia;>a;4,

We also note that if g, > 2—that is, if every A€ ag,(p) lies in the
(d — 2)-plane (d — 1)p then the intersection o,(p) N 7(q,r), and likewise the
cycles ©;, are all empty. Similarly, if a, = 1—that is, every A € g,(p) lies in the
osculating hyperplane dp to C at p—then the cycles £;(g) are all empty except
for Q,(¢).

Now we perform the second stage of our degeneration, letting ¢ tend to p: set

Z={(Ag) AEZ(9), 97 P}
The fiber Z, of 2 over p is then contained in the cycle
U en-r
ia;>a;4

where

g = | dimAN2p >0
0 dimAN(d—k+i—aq+2p>i+l
= od—k—l,ao ..... ak_|(p)
if g, = 0 and is empty if g, # 0; and

A>p
dmAN(d—k+i—a,+2)p >i+1, i<y

=<A:
‘o dimAﬂ(d—k+io—aio+3)p>i0+l

dmAN(d-—k+i—a+2)p>i+], i >
= ad—k,ao ..... a —1,..., ak_,(p)

0

and is empty if ¢, = 1 and iy # k.
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Since the cycles ; are all of the form o¢,(p) and all have codimension
>a;, + (d — k — 1), we see by the induction hypothesis that

dimo,(p) N 7(q,r) N 7 < max{—1,dimQ,(q) N 7}

< max{—1,dim{; N 7}

=max{—l,(k+ Nd—ky—Xa—-(g+2)(d- k—2)}.
Finally, in view of the identity (cf. [5], page 203)

0 ifa, >2
c ifa =1
—_ d—k,ag, ..., a _ K
Oy Oy j—y = ¢ b
O4—k—1l,aq.... a, T Z Od—k.aq.... a-1...., a., Ha=0
i+1< 4

in the cohomology ring of the Grassmannian, we may conclude that the
intersection has no multiple components: the class of every fibre of 2(g) (and of
2) is 0,(0,_,_)%*"; since by induction hypothesis the intersection of 7 with
each component §; of the fibre of ¥ has no multiple components, and
since—again by induction hypothesis—the pairwise intersections {2, N Qj N T are
of strictly smaller dimension, it follows that the intersection (U§,) N 7 has no
multiple components. ]

Note, finally, that since more general secant flags to a rational normal curve
may be specialized to the osculating flag at a point, we have immediately the
following

COROLLARY. For any collection of points p,,...,p, on a rational normal
curve C C P? and any collection of non-negative integers by, 1<i<d 1<j<m

satisfying

let V,(p) be the flag with elements

Vioi=bapi+ - +biypy, -

i

Then for a any Schubert index, { p\, . . ., p,,. 4, .} general points on C and b any
collection of integers as above, the intersection

o, (Ve(p)) N 7(qpr)N--- N "'(‘Ig”'g)

has codimension 3 a; — g(d — k — 1) in G(k, d), and has no multiple components.

3. Multiplicities of W

(a) We come now to the question of whether, on a general curve of genus g,
the subscheme W, may have multiple components. Equivalently, we now know
that on a general curve W has the dimension p predicted by Brill-Noether, and
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hence from [9] that the class of the cycle W C J(C), counting multiplicities, is
i=oli!/(g —d+ r+ )!98 °. We may ask whether this is in fact the class of
the support of W/ —e.g., in case p=0 whether W will actually consist of
g'[1i'/(g—d+ r+i)! distinct points. We observe that this is equivalent to
asking the same question for C; C C,: Does the support of C; have the class
predicted by Porteous’ formula? The strong form of the Castelnuovo-Severi-
Kleiman conjecture asserting that for C, a general Castelnuovo canonical curve
W;(C,). realized as a subscheme of the Grassmannian G(d — r — 1,d), has no
multiple components suggests that this should be true. However, further work is
required to draw the desired conclusion: While we were able in section lc to
relate coarse characteristics such as the dimension of W;(Cy) to that of W;(C),
our approach does not immediately allow us to relate the more subtle question
of the multiplicity of a component of W;(C)—defined as the image scheme in
the Jacobian of the subscheme C; C C, given by the vanishing of minors of the
Brill-Noether matrix—to that of W_j(C,)—defined as the scheme-theoretic
intersection of Schubert cycles on the Grassmannian.

We resolve this difficulty by solving an enumerative problem. The idea is
simply that a multiple component of a subscheme Y C X will show up when we
count the points of intersection with a cycle Z C X of complementary
dimension: if we know that no component of Y is disjoint from X, then equality
between the topological intersection numbers of Y and Z and the actual number
of distinct points of Y N Z will imply that Y has no multiple components. In the
present situation we will intersect the subscheme C; of the symmetric product C,
of C with the image of C,_,_, in C,—that is, the locus of divisors of degree d
containing r + p fixed points. Thus we are led to the following question:

Given general points q,, . . ., g, , on a general curve C of
genus g, how many divisors of degree d are there on C with
r(D)>r
D—ql_ e —qr+p>0?

We will first give the “enumerative answer” to this problem; i.e., we will
compute the intersection number

‘U,(g, r’d) = (C; ' Cd-r—p)

in C,. Then, by applying the strong form of the Castelnuovo-Severi-Kleiman
conjecture and some Schubert calculus, we will give the actual answer on a
generic Castelnuovo canonical curve, which turns out to be exactly u(g,r,d).
Going back to our family {C,} of curves degenerating to C,, we have then the
following situation: we know from the results of [9] quoted above and the
computation in part (b) below, that the set of divisors on C, satisfying the
conditions above either

(1) is positive-dimensional; or

(ii) consists of at most u( g, r, d) distinct points.

We know moreover by part Ila of our main theorem (with a small additional
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argument) that (i) cannot be the case. Finally, we know by the strong
Castelnuovo-Severi-Kleiman conjecture and the computation in part (c) that the
set of divisors on C, satisfying the conditions given consists of exactly u(g,r,d)
distinct points. From elementary considerations, then, we may conclude that for
general ¢, the set of divisors D satisfying the conditions consists of exactly u(g,r,d)
points.

Checking then that no component of C;(C,) may miss C,_,_ (C,) entirely, we
conclude the desired statements IIb and llc for a general curve C, of our family
{C,}, and hence for a general curve of genus g.

(b) To compute the intersection number C; - X"*? on the symmetric product
we shall use the following notations and facts from [1], in which there are proofs
and references to the original sources:

(1) 7 : C,— J(C) denotes the standard map to the Jacobian (= is denoted by p
in [5]);

@) xe H?*(C,, Z) is the fundamental class of the image X of C,_, in C,; and

(3) 0 = 7*8 is the pullback to C, of the class of the #-divisor on J(C).

The basic facts about the cohomology of C, are:
(1)) H*(C,, Z) is generated over the subring #* H*(J(C), Z) by the class x, that

satisfies the relation
d—g+1

z (_l)i%xd—g+l—i=0.
i=0 i

(i) The image of the class x“78** under the push-forward (Gysin) map
7 H¥(Cy, Z)—> H*(J(C), Z) is

d—g+k — 0_k
k!

(iii) The Chern classes of the tangent bundle to C, are given by

Ty X

S c(T(Cp)) = (1 + xt)? "8+ le=0/(+)
and finally, applying Porteous’ formula to the vector bundle map
Ty 1 T(Cy)>7*T(J(C))

obtained from the differential of # we conclude:
(iv) The class of C; is given by

gg—d+r ge—d+r+1 gg—d+2r—1 ,
(g—d+r) (g—d+r+1) (g—d+2r—1) *
ge—d+r—1 . rei
(g—d+r-1! *
Cj~det .
ég—~d+r
(g—d+r) *
9g—4 ge—d+r—1
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Multiplying the right-hand column of this matrix by x"*? and applying the
push-pull formula 7,(a - 7*B) = 7ea - B gives

ag-d+r 6g+d+2r-l 2rtp
(g—d+nr) (g—d+2r—1)! x
#(C)- X7P) = det, ;
ég—d é’g—-d-#-r—l o
(g-d)! (g—d+r—1n ~
0g—a'+r 0g—d+2r—l 0g—d+2r+p 1
(g—d+n (g—d+2r—1) (g—d+2r+p)
=det,(c) Bg_‘d.q-r
(g—d+r)
og—d 0g—d+r—l 0g—d+r+p
(g—d) (g—d+r-1 (g—d+r+p)
1 . 1 1
(g—d+r) (g—d+2r—1)! (g—d+2r+p)!
= gUr+D(g—d+n+p . (et . : :
1 1 1
(g—da) (g—d+r+1)

(g—d+r+p)
It is well known that

0(r+l)(g—d+r)+p = 08 = g|’

to evaluate the determinant, we note that in general the determinant

1 1 1
a,! a)! a!
. 1
1 1
det (a, +1)! (a, +1)!
1 1 cee 1
(ag+ r)! (a, + r)! (a, + ) )

is readily calculated: Multiplying the (i + 1)st column by (g; + r)! we obtain the
matrix

P.(ay) P.ay)

P.(a,)
Pr— I(aO)

Pr— l(ar)

P o(ao) P 0('ar)
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where
P(ay=(a+r)a+r—=1)---(a+r—i+ 1)

the polynomials Py, ..., P, all being monic and forming a basis for the
polynomials of degree < r, this matrix may be row-reduced to the Van der
Monde matrix

which has determinant

A(ag, ..., a)= H (aj - a).

o<i<j<r
Thus
4 . 1
ay! a,! H (aj - a)
det . . — i<j
. : (ag+nr)---(a +r)
1 1
(ag+ r) (a,+ )
In our present circumstance
ay=g—d
a=g—d+1

a_,=g—d+r—1
a=g—d+r+p

SO

r—1
I1 (4 —a)= 1;[0“’

0<i<j<r—1

while

r + p)!
M (@-ay= 00

1
o<i<r p-
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We have, then, finally

gH(r+o)! = it
p!(g—d+2r+p)! ,.130 (g—d+r+i)

Cp-XTe=

a number we shall henceforth call p(g,r, d).

(c) Let C, be a general Castelnuovo canonical curve with normalization C a
rational normal curve of degree d in P%. A linear series g on C, is then cut out
on C by hyperplanes that pass through a (d — r — 1)-plane A C P? meeting each
of the g chords to C joining pairs of points over a node of C,. Now let

gy - - -+ 4,4+, b€ general points of C; then those g; that contain a divisor passing
through ¢,,...,q,,, are also readily described: They are given by those
(d — r— 1)-planes A that additionally lie in a hyperplane with the points
g - - - » 4p+,—that is, meet the (p+ r — 1)-plane g, ¢, in a (o—1)-

plane, instead of a (p — 2)-plane as expected. The number of such planes A is
then, by the Castelnuovo-Severi-Kleiman conjecture, given by the intersection
number o~
((0)f 01, 1)G(d = r—1.d);
—_
0

we will compute this number and answer our question at the conclusion of the
following digression.

Some Schubert calculus. We want to determine, in the Grassmannian
G(d — r — 1,d), the intersection number of powers (o0,)¥ of o, with Schubert
cycles o, ;- To do this, we are more or less forced to solve a more general
problem: the intersection number (of - 7) for any integer kK with 1 < A <r+1
and any Schubert cycle 7; or, dually, the intersection number

in G(r,d). Inasmuch as under the inclusion ¢:G(r,d)—> G(r,d’) we have
*o, . 1» it will be convenient for our present purposes to use a
notation for 7 that is consistent with the push-forward map i, in homology, e.g.,
to set, for any collection of integers 0 < gy < a,<a, < -+ <a,_,<a,

dimANP%>0
dimANP" > 1
dimANP*>r

for some partial flag P% C - - - C P%. Note that in G(r, d),

g oo a od—r—ao.d-r+l—al ..... d—a,
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and in particular this cycle has dimension (r + 1) (d — r) — 3i(_o(d—r+i—a)
= Sa, — r(r + 1)/2. The point of this notation is simply that the intersection
numbers

Sk;ao,..‘,a,=((ol ..... l)g'Tao,‘..,a,)

where 0 < gy <a, < --- <a, and g=a, — r(r+1)/2)/k are independent
of d.

The information we have about the numbers §;. is Pieri’s formula:

..... a,

0'l ..... 1 Tao,...,a,~ z Ta() ..... a;
,a—1<al<aq
a’:
Zaj=Za;— k

ie.,
ak;ao,...,a, = 28k;a{),....a,"
~

To use this formula, however, we have to express more clearly the indices a’ over
which the sum is taken. The problem is that simply subtracting 1 from k of the
indices a,, . . ., @, may give rise to an inadmissible sequence ay, . . ., a,: the a]
may no longer be strictly increasing, and if a, was 0 to start with we may wind
up with gy = — 1. Both of these problems are rather fortuitously taken care of
when we extend the definition of §,., to an alternating function on all
(r + 1)-tuples of integers; i.e., we set, for any permutation s of {0, ..., r},

6k; oy - - Ay = sgn(s) : 6k; ag, ...,a,
and of course

ifa,=a, anyi#j

6k;ao,.‘.,a,=0 or
ifa, <0, anyi.
We then have simply
8k;a = 2 8k;a-1 (*)
#]=k
where
o= a-1, i€l
(@=0=,, igr’

whenever g > 0. Finally, in case g = O—that is, 3 a;, = r(r + 1)/2—we have by
definition
sgn(s) ifay, ...,a,=s00),...,s(r)
Oap....aq = forsomes € X,
0 if not.
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Now we may carry out the computation. Set
— ag,. a a,
fk('xo”"’xr)_zsk:ao ..... aXo Xy e X,
a

We have then, separating the terms of f; of degree r(r + 1)/2 and applying (*) to
the remaining terms,

ﬂ( = 2 Bk.a‘xa_’_ 2 ak,axa

Sa;=r(r+1)/2 2a;=r(r+1)/2+ kg,
g>0
= z sgn(s)xg(o) N er(r)+ Z&k‘a_lxﬂ
SEZ, 4 a,l

=Axg, ..., x)+ 2 x'f,
7

=A(xg5 -+ o5 X,) T (Xgs -+ X,) fr

where A(xg, . . ., x,)* is the discriminant and ¢,(x,, . . . , x,) the kth elementary
symmetric polynomial in the x,’s. Thus

A(xgs - -5 X,)
Jelxor oo %) = 1= c(xgs - -5 X,)
and correspondingly
8k ap, ..., q = coefficient of x5 - - - x*in
A(Xgy « oy X)) C(Xgs - - -5 %)
= > sgn(s) - coefficient of
SEZ, 1)
x§o O x &0 in ¢ (X, - -4y x,)E

Two cases that work out nicely are K = 1 and k& = r. For k = 1, we obtain the

classical formula for the degree 7, -07% ""*D/2 of the Schubert cycle

T, .. under the Pliicker embedding
L
(dim 7)!
deg 7y, ... q = Seizzﬂsgn(ﬂ PR () TS —
1 aE L
ap! a,! a,!

= (dim 7)! det (a0 = 1)!

(ag—r)! (a,— ) Y (a,—
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which by the calculation of the previous section yields

II(q—a)

. i<j
= 1
degr, o = (dimT) a! - - a!
In particular, the degree of the Grassmannian G(r,d)=17,_, 4,41 ... 4 itself

is

degG(r.d) = (- + D= 1T 7 '1), :

Similarly, when k = r the coefficient of x - - - x” in ¢,(x, . . ., X,)6~ /" is
g!/(g —by)! - -+ (g— b)! and we have

: 5o : g
e (1 1) Zsgn(s) (g—ag+s@) - (g—a +s())
(g = ap)! (g—a)
= (_ l)('H)'/zg!-det .
1 B
(g—ag+r) (g—a +r)
H( "’ai)

i<j

=& (g—ag+r)---(g—a+n"’

In particular, we see from this and the CSK conjecture that the number of
(d — r — )-planes A C P? meeting each of g generic chords to a rational normal
curve C and in addition lying in a hyperplane with r + p general points of C is

/\
1+ 0f)G(d—r—1.d)

.....

[He+r+1-p- I G-9

Jj>0 I<i<j<r
B g—drrtpl(g—d+r2r—Dl-(g—d+7)

_ g(p+n) = i!
T pl(g—d+2r+p)! ,.EIO (g—d+r+i)

=p(grd).
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Finally, inasmuch as none of these planes A together with ¢q,, ..., g,,, will
fail to span a hyperplane H,, and that none of the hyperplanes H, will meet the
given chords to C at points of C—the locus of such planes satisfying Schubert
conditions of strictly higher codimension and hence, by the conjecture,
empty—we may conclude that

For qy, ..., q,., general points of a general Castelnuovo canonical curve C,,
there will be exactly u(g,r,d) divisors D on C, disjoint from the nodes of C,,

satisfying
r(D)>r

r(D—q,— "+ —4q.,) >0

(d) In the previous two sections we have arrived at the same number,
r(g.r.d), by two different routes: one pertains to smooth curves and the other
to Castelnuovo canonical curves. We want now to use the equality to conclude
the remainder of our main theorem.

To set up, let S ™ A be a surface with fibres C, = 7~ '(¢) a smooth curve of
genus g for ¢t 0 and with C; a general Castelnuovo canonical curve. We choose
arcs ¢, () € C, lifting = such that ¢,(0) is a general set of r + p smooth points on
C,. Denote by S, ™5 A the variety with fibres 7y '(f) = (C,), the dth symmetric
product of the fibres of 7 for 7 0, and fibre 7 '(0) = (C¥), the dth symmetric
product of the smooth locus of C. Inside S, we consider the closed subvariety

B={(D€EC,(r):r(D)>r and r(D—gq,(t)— -+ = q.,(1)>0}.

That this is a subvariety follows from the interpretation of the Brill-Noether
matrix (cf. §0(c) and §1(a)). Intuitively, B is the intersection of

Ci=U ()
rel

with

Xt = U Cup () + @) + -+ + G ()

teA
We note the following:
B has dimension at least 1 everywhere.

This is because C‘; and X"** have dimension p + r + 1 and codimension r + p
respectively (the assertion about dim C; follows from our assumption that C is
a general Castelnuovo canonical curve together with the dimension count in §2).

B meets the general fibre (C,), in a finite number of points.
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This is true for the following reason: For any smooth C, we consider the

incidence correspondence I, C (C,), X (C)),,, defined by

I,={(D,E):r(D)>r,r(D—E)>0j}.

The projection of I, onto the first factor is (C,);, which we know to have
dimension r + p, and moreover the fibre of this projection over p, + - - - + p,
€ (C), consists of all subsets {p;,...,p, } of the p’s. Since the g,() are
general points of C, for all ¢ our assertion folfows.

B meets the central fibre (C§), in exactly p(g,r,d) distinct points.

This is true by the result in the preceding section.

It follows that, by shrinking the disc A if necessary, that B meets each fibre
(C), in at least u(g,r,d) distinct points. On the other hand, by the calculation in
§3(b) the intersection

C;(t) N (Cd—r—p(t) + gl qcx(t))’

being zero-dimensional, can consist of at most u(g,r,d) points. The only
possibility is that B meets each fibre (C,), in exactly u(g,r,d) distinct points,
and we have proved the

THEOREM. For C a general curve of genus g and p,,...,p,,,€ C general
points, there are exactly
gtr+et ! i!
M rd)= e v 2r T o). ,.{10 (g—d+r+i)

divisors D on C of degree d, moving in an r-dimensional series and containing the
points p,.

Finally, as indicated in §3a, this result proves that C; has no multiple
components—that is, has fundamental class exactly as given above—once we
check that no component 2 of C; can fail to intersect Cy_,_, + q,+ -+ +q,,,.
To establish this it will suffice to exhibit a particular cycle C,_,_,+ g, + -+ +
Grap~X "*P meeting = transversely at one point. To find such a cycle, we first
remark that, as a consequence of the dimension statement dim Cj_; < dim C] —
8, proved already, a general fiber of any component of = will be a linear system
without base points; by Bertini’s theorem it follows that a general point D € X is
a divisor D = q, + - - - + q,, consisting of d distinct points.

Now, the tangent space T,(C,) to C, at D is a d-dimensional vector space
with a natural choice of coordinate axes, corresponding to the points g, . . ., g,.
To give a cycle in C, representing X’ ** and passing through D, we may choose
any set I ={i;,...,4,,} C{l,...,d} and take

I‘l= Cdr—-r—p+ qi,+ cec Tt q;

rap”
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We see that the tangent space to I', at D is just the coordinate
(d — r — p)-plane in T,(C,) spanned by the coordinate axes corresponding to
the points {g,},.,; and since the (r + p)-plane 7),(Z) must meet at least one of
the coordinate (d — r — p)-planes of T,(C,) transversely, we conclude that D is
an isolated point of intersection of Z with T'; for some 1.

To finish, consider the incidence correspondence / C 2 X C,,, given by

I={(D,E):DEC,_,_,+E}.

Inasmuch as the fibers of I over 2 are all finite, we see that I has pure dimension
r + p. On the other hand, since as we have seen at least one fiber of / over C, .,
contains an isolated point, at least one component of I surjects onto C,, ,> thus
2NC,,_,+ E+#D for every E, and so we are done.
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