Questions. In $\text{SL}(2, \mathbb{R})$

in general questions are best asked in terms of structure groups G and discrete subgroup Γ, assume $\Gamma \backslash G$ finite volume.

max. compact subgroup. A max. unimodular subgroup.

$G = KAK$, \quad \Gamma G = K\Gamma A K$.

chap. prob. in $\text{SL}(2, \mathbb{R})$, $x = e$, $\begin{pmatrix} \phi & \theta \\ \theta & \phi \end{pmatrix}$.

how are angles distributed.

$: f \left(\begin{pmatrix} \frac{a}{c} \\ \frac{b}{c} \end{pmatrix} \right) = \left(\begin{pmatrix} \phi & \theta \\ \theta & \phi \end{pmatrix} \right) \left(\begin{pmatrix} 0 & -\frac{c}{b} \\ \frac{c}{b} & 0 \end{pmatrix} \right) \left(\begin{pmatrix} 1 & \frac{a}{c} \\ \frac{a}{c} & 1 \end{pmatrix} \right)$

$|c| \leq x$ how many are $\frac{a}{c}$ and $\frac{b}{c}$ distincts modulo 1.

We fix several analyses; best carried out directly on group, using functions of two arguments q_1 and q_2 defined by series

$$
\sum_{(q_1, q_2)} f(q_1, q_2)
$$

where ξ_1 fixed instead here.

Dedicate with two points ξ, ξ' in H, and certain Jacobi transfer that represent automorph forms (not necessarily analytic) in both variables.
quickly recall

\[ds^2 = \frac{dx^2}{y^2} \] \quad \text{in operator} \quad y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)

invariant of two points.

\[\mathcal{U}(z, \xi) = \frac{|z - \xi|^2}{4y^2} = \frac{e^{p/2} - e^{-p/2}}{y} \]

where \(p = d(z, \xi) \) invariant distance.

Area of circle \(A(z, \xi) = \frac{\pi}{4} (\mathcal{U}(z, \xi) - 1) \)

\[q^2 = \frac{a^2 + d}{c^2 + d} \] \quad \text{define } \Sigma_q(z) = e^{|\arg(cz+d)} \]

\[\frac{y}{q^2} = \frac{y}{(c^2 + d)^2} \quad \text{here} \]

scalar equation

\[\frac{d^k}{dq^{2k}} = (c^2 + d)^{k+1} \frac{d^k}{dz^{2k}} (c^2 + d)^{-k-1} \]

We say \(f(z) \) is a form \(f \) of \(\Gamma \) of \(\text{index } (p, q) \)

\[f(z) = \Sigma_q(z)^k f(z) \quad \text{in } \Gamma \]

for \(k \leq h \) put

\[D_{\nu, k} = (z - \xi)^{h-k} \frac{d^{h-k}}{dz^{h-k}} y^{h-1} \]

for \(k \geq h \)

\[D_{\nu, h} = (-z - \xi)^{h-k} \frac{d^{h-k}}{dz^{h-k}} y^{h-1} \]
(P, k) form

so that \[D_{m+k} = \overline{D}^{-h_1-k} \]

then

\[D_{m+k} (q^2) = \overline{D}^{-h_1} D_{m+k} (q^2) \overline{D}^{-h_1-k} \]

then if \(f \) is form of index \(k \) in \(P \)
\[D_{m+k} f \] is form of index \(h \).

The operator

\[\Delta_k = \frac{q^2}{8} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial q^2} \right) - z i k q \frac{\partial}{\partial q} \]

carries a form of index \(k \) to another. Can show that if \(f \) is
eigenfunction of \(\Delta_k \) then \(D_{m+k} f \)
is eigenfunction of \(\Delta_k \) with same
eigenvalue (but \(D_{m+k} f \) may of course
identically 0 for some \(f \).

Look at spectrum of eigenfunctions
of \(\Delta_k \) which are forms of \((P, k)\) forms
and \(f \) for which \[\int f^2 \frac{dx dq}{q^2} < \infty \]
with eigenvalue in form \(\frac{1}{4} + r^2 \) (within \(r \))

The analysis of the spectrum for general \(k \) is essentially the same as for \(k = 0 \), only one eigenfunction is annihilated when passing from one level to another (apart from \(k = 4 \)).

In \(k < 0 \) and \(k > 0 \) we have a finite set of eigenvalues of form \((\frac{2}{4} - k + \epsilon)(1 + \epsilon - k) \) where \(0 \leq \epsilon \leq k \), multiplicity of each equals sum of analytic \(2 \) of weight \(\frac{1}{4} \) in \(P \), similarly for \(k < 0 \).

For \(k = 0 \)

Hankel functions appearing here are orthonormally given

\[
\sum f(x, y, z) = \sum h(x) \, \mu_{n+1}^+(z) \mu_{n+1}^-(z)
\]

with

\[
h(x) = \int_0^x \sin(t) \, f(t, z) \, \frac{dt}{y^2}
\]

For the other levels similar theorems occur. we will refer to \(\mu_{n+1}^+ (z) \) as orthonormal system of level \(k \).
the analytic center. constant \(\frac{1}{\sqrt{\lambda(\theta)}} \) present only for \(\lambda = 0 \) level \(0 \).

\[h > k \quad \text{and} \quad D_{h,k} = \mu_n(\zeta) \text{ and } D_{h,k} = \mu_n(\zeta) \]

with \(h < k \).

\[\lambda^2 = \frac{\prod (k + \frac{1}{2} + iv) \prod (k + \frac{1}{2} - iv)}{\prod (h + \frac{1}{2} + iv) \prod (h + \frac{1}{2} - iv)} \]

In cases where the eigenfunction disappears in level \(\lambda \), \(\lambda = 0 \) by this formula.

Experience shows that it is most convenient to work with dimensionless series.

The general analytic vehicle we shall choose is given by the

\[\sum \left(\theta(\xi, \eta) \right) e^{-i \theta(\xi, \eta)} \]

which converges for \(R > 1 \) and

\(\lambda \) of level \(k \) in \(\xi \) and \(-h \) in \(\eta \).

However, in general (for \(h \neq k \)) this function is singular at \(\zeta = 0 \) and so not very usable. Therefore we choose instead
for \(\ell \geq k \)

\[K_{\ell, h}(z, \xi; \Delta) = \sum_{\gamma \in \Gamma} \left(\frac{n(x, \zeta)}{n(x, \xi)} \right)^{-\Delta} \frac{1}{\gamma z - \frac{\xi}{\gamma}} \]

\[= \sum_{\gamma \in \Gamma} \frac{\zeta^{2 - \frac{\xi}{\gamma}} + i \kappa \arg \frac{\xi - \gamma^{-1} \xi}{\zeta - \gamma^{-1} \xi}}{\gamma z - \frac{\xi}{\gamma}} \]

which has no finite singularity

and for \(\ell < k \), we define

\[K_{\ell, h}(z, \xi; \Delta) = \sum_{\gamma \in \Gamma} \frac{1}{\gamma z - \frac{\xi}{\gamma}} \]

For compact \(\Gamma \subset H \) can show

for \(\ell \geq k \)

\[K_{\ell, h}(z, \xi; \Delta) = \]

\[= \sum_{\gamma \in \Gamma} \frac{\zeta^{2 - \frac{\xi}{\gamma}}}{\gamma (z - \frac{\xi}{\gamma})} \frac{\zeta^{2 - \frac{\xi}{\gamma}}}{\gamma (z - \frac{\xi}{\gamma})} \frac{1}{\gamma z - \frac{\xi}{\gamma}} \]

\[\sum_{\gamma \in \Gamma} \frac{\zeta^{2 - \frac{\xi}{\gamma}}}{\gamma (z - \frac{\xi}{\gamma})} \frac{\zeta^{2 - \frac{\xi}{\gamma}}}{\gamma (z - \frac{\xi}{\gamma})} \frac{1}{\gamma z - \frac{\xi}{\gamma}} \]

For constant eigenfunction \(\frac{1}{\sqrt{\Delta(z)}} \) occurs only for

\[k = h = 0 \]
When it gives a term \(\frac{4\pi^2}{\sigma(D)} \frac{1}{\varepsilon - 1} \)

which is only pole in region \(\sigma > 1 \)

Results: (assume first our eigenvalues between \(0 < \varepsilon < \frac{1}{2} \))

\[
\sum \frac{h \log \frac{\beta - \varepsilon}{\beta - \varepsilon^*} + i k \log \frac{\beta - \varepsilon^*}{\beta - \varepsilon^*} \frac{2 - \varepsilon^*}{2 - \varepsilon}}{\alpha(2, q)} \leq \chi
\]

\[
= \frac{4\pi}{\alpha(D)} \chi + O\left(\chi^{\frac{2}{3}} \right)
\]

for \(h = k = 0 \)

\[
= O \left(\chi^{\frac{2}{3}} \right)
\]

\[
= O \left(\chi^{\frac{2}{3}} \right)
\]

for \(h = k \neq 0 \)

\[
= O \left(\chi^{\frac{2}{3}} \right)
\]

for \(h \neq k \).

If eigenvalues between 0 and \(\frac{1}{2} \)

we get some remainder terms

but have some leading term \(\frac{1}{\beta^2} \cdot \log(R) \)

\[
\sum \left| \mu_n^{(2)} \right|^2 \leq \frac{\rho(2\varepsilon - 1)}{\beta(1 - \varepsilon)(1 - \varepsilon)} \mu_n^{(2)} \mu_n^{(2)} \leq R \frac{\rho(2\varepsilon - 1)}{\beta(1 - \varepsilon)(1 - \varepsilon)} \mu_n^{(2)} \mu_n^{(2)}
\]

\(n \leq R\)
auto meromorphic for an $n > 0$ square integer n can be expanded in eigenfunctions,

there exist ε-Eisenstein series.

find relation

then look at Fourier transform expansion of $L^m (2)$ in terms of $e^{i n x}$. coeff of $e^{i n x}$ in involves series.

$$\sum_{c \neq 0} \frac{e^{i n x} \frac{a+c}{c}}{|c|^{2 \varepsilon}} = \sum_{c \neq 0} c^{\frac{1}{2}} x^{2 \varepsilon} + o(x^2)$$

meromorphic for $\sigma > \frac{1}{2}$ has poles at most in points $\sigma = \frac{1}{2} + i n$, but for $m, n \neq 0, 0$ we have poles at $\sigma = 1$. In $m = n = 0$ we have poles at $\sigma = \frac{1}{2}$.

Eisenstein series.

$$\sum_{|c| < \lambda} (x-\lambda c) e^{i x \frac{a+c}{c}} = \sum_{1 > p > \frac{1}{2}} c^{i \frac{1}{2}} x^{2 \varepsilon} + o(x^2)$$

thus if $\text{ord } p > \frac{1}{2}$,

$$\sum_{1 > \lambda c < x} (x-\lambda c) e^{i x \frac{a+c}{c}} = o(x^2)$$

in most cases giving $m = 1$. This is

$$\sum_{1 > \lambda c < x} (x-\lambda c) \mu(\lambda) = o(x^2).$$

which simplifies $\sum_{n \leq x} \mu(n) = O(x)$.
5.7. Problem 11. Evaluate \(U(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} \) for real \(x \in \mathbb{R} \) using \(e^x \).

Analytic vehicle: \(e^x \).

Proven in uniform plan.

\[
\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = e^{-x}
\]

\[
\frac{d^2}{dx^2} e^{-x} = -e^{-x}
\]

\[
\int e^{-x} dx = -e^{-x} + C
\]

and:

\[
YAC = 2B = D
\]

Final answer:

1. \(\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = e^{-x} \)

2. \(e^{-x} = \frac{d^2}{dx^2} \left(\frac{1}{2} \right) \)

3. \(-e^{-x} = \int \left(\frac{d^2}{dx^2} \right) dx \)

4. \(-e^{-x} + C = \int \left(\frac{d^2}{dx^2} \right) dx \)

5. \(e^{-x} = C \)

6. \(e^{-x} = \frac{d^2}{dx^2} \left(\frac{1}{2} \right) \)

7. \(e^{-x} = \) constant for \(x \) in \(\mathbb{R} \)