Selberg Paper. Norsk. Mathematisk Tidsskrift, 26, 71-78 (1944)

Write

$$\Delta(u) = \Delta(u_1, \ldots, u_p) = \prod_{i<j}^{p}(u_j - u_i).$$

Theorem: For integer p and complex x, y, z with

$$\text{Re}(x) > 0, \text{Re}(y) > 0, \text{Re}(z) > -\min \left[\frac{1}{p}, \frac{\text{Re}(x)}{p-1}, \frac{\text{Re}(y)}{p-1} \right],$$

we have

$$I = \int_0^1 \cdots \int_0^1 \left(\prod_{i=1}^{p} u_j \right)^{x-1} \left(\prod_{i=1}^{p} (1-u_j) \right)^{y-1} |\Delta(u)|^{2z} \, du_1 \cdots du_p$$

$$= \prod_{\nu=1}^{p} \left[\frac{\Gamma(1+\nu z)\Gamma(x+(\nu-1)z)\Gamma(y+(\nu-1)z)}{\Gamma(1+z)\Gamma(x+y+(p+\nu-2)z)} \right].$$

Proof: For $p = 1$ this reduces to the well-known Euler integral

$$\int_0^1 u^{x-1}(1-u)^{y-1} \, du = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$

so we assume $p > 1$.

Consider first the case when z is a positive integer. Then

$$|\Delta(u)|^{2z} = \sum C_{\alpha_1, \alpha_2, \ldots, \alpha_p} u_1^{\alpha_1} \cdots u_p^{\alpha_p}$$

with integer coefficients c. Therefore the integral I is a linear combination of terms

$$\prod_{\nu=1}^{p} \left[\frac{\Gamma(x+\alpha_\nu)\Gamma(y)}{\Gamma(x+y+\alpha_\nu)} \right],$$

where, without loss of generality, we may suppose that $0 \leq \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_p$. Since $\Delta(u)$ is homogeneous of degree $\frac{3}{2}p(p-1)$, we have

$$\sum_{\nu=1}^{p} \alpha_\nu = p(p-1)z,$$

$$\alpha_p \geq (p-1)z.$$

In the same way, since $\Delta(u_1, \ldots, u_p)$ is divisible by $\Delta(u_1, \ldots, u_\nu)$ for each ν, we have

$$\alpha_\nu \geq (\nu-1)z.$$
Now
\[|\Delta(u)|^{2z} = \left(\prod_{j=1}^{p} u_j \right)^{2(p-1)z} |\Delta(1/u)|^{2z}, \]
and therefore the exponents \(\alpha'_\nu = 2(p-1)z - \alpha_{p+1-\nu} \) satisfy the same inequalities
\[\alpha'_\nu \geq (\nu - 1)z. \]

Therefore
\[\alpha_\nu \leq 2(p-1)z - (p-\nu)z = (p+\nu-2)z. \]

This means that
\[\frac{\Gamma(x + \alpha_\nu)}{\Gamma(x + y + \alpha_\nu)} = \frac{\Gamma(x + (\nu - 1)z)}{\Gamma(x + y + (p+\nu-2)z)} q_{\alpha_\nu}(x, y) \]
where \(q_{\alpha_\nu}(x, y) \) is a polynomial in \(x \) and \(y \) with degree \([(p+\nu-2)z - \alpha_\nu] \) in \(y \). Thus
\[\prod_{\nu=1}^{p} \frac{\Gamma(x + \alpha_\nu)\Gamma(y)}{\Gamma(x + y + \alpha_\nu)} = Q_\alpha(x, y) \prod_{\nu=1}^{p} \left[\frac{\Gamma(x + (\nu - 1)z)\Gamma(y)}{\Gamma(x + y + (p+\nu-2)z)} \right] \]
where \(Q_\alpha(x, y) \) is a polynomial in \(x \) and \(y \) with degree in \(y \)
\[\sum_{\nu=1}^{p} [(p+\nu-2)z - \alpha_\nu] = \frac{1}{2} p(p-1)z. \]

Since \(I \) is a linear combination of such terms,
\[I = Q(x, y) \prod_{\nu=1}^{p} \left[\frac{\Gamma(x + (\nu - 1)z)\Gamma(y)}{\Gamma(x + y + (p+\nu-2)z)} \right] \]
\[= \frac{Q(x, y)}{R(y)} \prod_{\nu=1}^{p} \left[\frac{\Gamma(x + (\nu - 1)z)\Gamma(y + (\nu - 1)z)}{\Gamma(x + y + (p+\nu-2)z)} \right] \]
where
\[R(y) = \prod_{\nu=1}^{p} [y(y+1) \cdots (y + (\nu - 1)z - 1)], \]

and \(Q(x, y) \) is a polynomial in \(x, y \) of degree at most \(\frac{1}{2} p(p-1)z \) in \(y \). It follows from \(\Delta(u) = \pm \Delta(1-u) \) that \(I \) is symmetric in \(x \) and \(y \). Therefore
\[\frac{Q(x, y)}{R(y)} = \frac{Q(y, x)}{R(x)}. \]

But the right side of this identity is a polynomial in \(y \), and therefore \(Q(x, y) \) must be divisible by \(R(y) \). Since the degree of \(Q(x, y) \) in \(y \) is equal to the degree of \(R(y) \), the
quotient must be independent of y. By symmetry, the quotient is also independent of x. That is to say

$$ I = c_p(z) \prod_{\nu=1}^{p} \left[\frac{\Gamma(x + (\nu - 1)z)\Gamma(y + (\nu - 1)z)}{\Gamma(x + y + (p + \nu - 2)z)} \right] $$

To determine $c_p(z)$, we take $x = y = 1$. Then

$$ J_p = \int_0^1 \cdots \int_0^1 |\Delta(u)|^{2z} \, du_1 \cdots du_p = c_p(z) \prod_{\nu=1}^{p} \left[\frac{(\Gamma(1 + (\nu - 1)z))^2}{\Gamma(2 + (p + \nu - 2)z)} \right]. $$

Now we let w be the largest of the u_j and take for the other u_j

$$ u_j = w v_j, \quad 0 \leq v_j \leq 1. $$

Then

$$ J_p = p \int_0^1 w^{p-1} \int_0^1 \cdots \int_0^1 |\Delta(u)|^{2z} \, dv_1 \cdots dv_{p-1} \, dw $$

$$ = p \int_0^1 w^{p-1+z(p-1)} \int_0^1 \cdots \int_0^1 \left[\prod_{\nu=1}^{p-1} (1 - v_\nu) \Delta(v) \right]^{2z} \, dv_1 \cdots dv_{p-1} \, dw $$

$$ = \frac{1}{(p-1)z + 1} I' $$

where I' is the integral I with $x = 1, y = 2z + 1$ and $p - 1$ for p. That is to say,

$$ c_p(z) \prod_{\nu=1}^{p} \left[\frac{(\Gamma(1 + (\nu - 1)z))^2}{\Gamma(2 + (p + \nu - 2)z)} \right] = \frac{c_{p-1}(z)}{(p-1)z + 1} \prod_{\nu=1}^{p-1} \left[\frac{\Gamma(1 + (\nu - 1)z)\Gamma(1 + (\nu + 1)z)}{\Gamma(2 + (p + \nu - 2)z)} \right]. $$

This reduces to

$$ \frac{c_p(z)}{c_{p-1}(z)} = \frac{\Gamma(2 + (p-1)z)\Gamma(1 + pz)}{((p-1)z + 1)\Gamma(1 + (p-1)z)\Gamma(1 + z)} = \frac{\Gamma(1 + pz)}{\Gamma(1 + z)}. $$

Since $c_1(z) = 1$, we have

$$ c_p(z) = \prod_{\nu=1}^{p} \left[\frac{\Gamma(1 + \nu z)}{\Gamma(1 + z)} \right], $$

which completes the proof for integer x.

The proof extends to complex z with $\text{Re} \, z > 0$ by a standard argument using Carlson's theorem. Finally, by analytic continuation, it extends to all complex x, y, z for which the integral I is well-defined.
\[
S_m(x,y,z) = \int \cdots \int \left(\sum_{i=1}^{x-1} \cdots \sum_{i=1}^{y-1} (1-t_i) \right) \frac{\partial^2 \mathcal{F}}{\partial \theta_i^2} \, dt_1 \cdots dt_y = \frac{1}{x!} \frac{\prod_1 \mathcal{P}(v_2) \mathcal{P}(x+v_2) \mathcal{P}(y+v_2)}{\prod_1 \mathcal{P}(v_2) \mathcal{P}(x+y+v_2) \mathcal{P}(y+x+v_2)}
\]

\[
S_0(x,y,z) = \int \left(\sum_{i=0}^{x-1} \cdots \sum_{i=0}^{y-1} \Delta \mathcal{F} \right) \, d\mathcal{F}_0 \cdots d\mathcal{F}_{k-1}
\]

\[
F(t) = \frac{\partial^2 \mathcal{F}_{i}^2}{\partial \theta_i^2} \quad \Delta \mathcal{F} = \sum_{i=0}^{x} F(t) \frac{\partial^2 \mathcal{F}_{i}^2}{\partial \theta_i^2} = \prod_1 \theta_i - \theta_i
\]

Lemma: Let \(0 < \theta_1 < \theta_2 < \cdots < \theta_n < \tau_m \)

\[
F(t) = \prod_{i=1}^{n} (t-\theta_i) \quad T(t) = \prod_{i=0}^{n} (t-\theta_i)
\]

Define \(D \mathcal{F} \):

\[
D \mathcal{F} = \prod_1 \mathcal{P}(\theta_0) \cdots \mathcal{P}(\theta_n) \prod_1 \left(T(t) \right)^{\lambda_i-\frac{1}{2}}
\]

Set \(\frac{F(t)}{T(t)} = \sum_{i=0}^{n} \frac{p_i}{t-\theta_i} \), where \(p_i = \frac{F(\theta_i)}{T(\theta_i)} \)

\[\sum_{i=0}^{n} p_i = 1, \quad \text{and} \quad p_i > 0 \]

Set \(p_i \) to avoid the polynomial \(F \) : \(D \mathcal{F} \). Show that the integral is

\[\int \mathcal{P}(\theta_0) \cdots \mathcal{P}(\theta_n) \prod_1 \left(T(t) \right)^{\lambda_i-\frac{1}{2}} \]

Integral with respect to variable \(\theta_i \):

\[\mathcal{V} \mathcal{H} \mathcal{A} \mathcal{R} \quad \frac{\partial \mathcal{F}}{\partial \theta_i} \quad \Delta \mathcal{F} = \prod_1 \left(T(t) \right)^{-\frac{1}{2}} = \left| D \mathcal{F} \right|^{-1} \]

Integral of
\[\frac{\eta}{1!} \left[T \left(\sum \rho_i \right) \right] \sum_{i=0}^{\eta} \rho_i \left(\prod_{i=0}^{\eta} x_i \right) \]