Dear Adele,

It was good talking to you last night. She brings good cheer.

On August 21, 03, I sent you a copy of your MS by air mail, and telephoned you to say that I had done so. I am sorry you never got it. I should have called you again, but I was not well enough to do so during the winter.

Here is another copy. Best regards to you both from both of us.

Chariton

15 June 04
Re: the replacement copies sent by K. Chandrasekharan

1) The xerox copy that Selberg received in June 2004 had the following self-memo inscribed on the upper right corner of page 1.

 KC received 29 August 95.
 He [Selberg] asked for a copy on 20 Aug 2003.
 Sent it on 21 Aug 2003 (air mail).

2) The copy that Chandrasekharan sent in Aug 2003 does indeed seem to be lost: it turned up neither in Selberg's office nor home.

3) Page 2 of the copy that KC received from Selberg in 1995 differed very slightly from the original transparency. See copy below.
For \(n \geq 1 \), given a discrete lattice of translates in Euclidean \(n \)-space whose elements \(\omega \) (each with \(n \) components \(\omega^{(i)} \)) are generated by \(n \) linearly independent elements \(\xi_1, \ldots, \xi_n \) (with nonsingular matrix \(R = (\xi^{(i)}_{(j)}) \)), assume the lattice is irreducible in the sense that if an element \(\omega \) has one component \(\omega^{(i)} \) equal to zero, then all components of \(\omega \) are zero: \(\omega = 0 \). Denote by \(\mathbb{R}\omega \) the group with elements \((\xi^{(i)}_0) \), generated by \((\xi^{(i)}_{(j)}) \) for \(j = 1, \ldots, n \).

If we now adjoin to \(\mathbb{R}\omega \) an element

\[
M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}
\]

with components \((\alpha^{(i)}, \beta^{(i)}, \gamma^{(i)}, \delta^{(i)}) \)

and \(\alpha \delta - \beta \gamma = 1 \) (\(\alpha^{(i)}, \beta^{(i)}, \gamma^{(i)}, \delta^{(i)} \) real)

when is the resulting group discrete? \[Case \, m=1. \, \boxed{\text{Case } m > 1} \]

2. Put \(D = \| \xi^{(i)}_{(j)} \| = \| R \| \).

From a theorem of Minkowski:
For \(t_i > 0 \) and

\[
\| t_i \| \geq D \implies \omega \neq 0
\]

with \(\| \omega^{(i)} \| \leq t_i \) for \(i = 1, \ldots, n \).

will be used repeatedly.