\(\xi(\alpha, x) = \xi(1-\alpha, x) \)

for \(x \) primitive and even, where \(\alpha > 0 \) and

\[\xi(\alpha, x) = \sum_{\chi} \frac{-\alpha}{\phi} \frac{\xi}{\xi} \chi \left(\frac{x}{\varphi} \right) \zeta(1-\alpha, x), \]

and for \(x \) odd

\[\xi(\alpha, x) = \sum_{\chi} \frac{-\alpha}{\phi} \frac{\xi}{\xi} \chi \left(\frac{x}{\varphi} \right) \zeta(1-\alpha, x), \]

and finally for the case \(\alpha = 1 \)

\[\xi(1) = \xi(1-1, x), \]

where

\[\xi(1) = \Delta(\alpha-1) \frac{-\alpha}{\phi} \frac{\xi}{\xi} \chi \left(\frac{x}{\varphi} \right) \xi(x). \]

The \(\xi \) are all integral functions with all of their zeros on the line \(\Re(s) = \frac{1}{2} \), and symmetrically to the line \(\Re(s) = \frac{1}{2} \).

Lemma. If \(f(z) \) is analytic in \(\Re(z) \)

\(1 \leq R \); \(f(z) \neq 0 \) and \(|f(z)| < M \)

for \(|z| \leq R \), then the number of zeros of \(f(z) \) in the circle \(|z| < R \)

where \(R < R \).
is bounded by
\[
\frac{M}{\log \left| f(0) \right|} \log \frac{R}{R^*}.
\]

Denote the zeros of \(f(z) \) in the circle \(|z| = R \) by \(\alpha_i \), and write \(R \in (0, 1) \),
write
\[
q(z) = \prod \frac{z - \alpha_i}{R - \alpha_i^* R}
\]
We have \(|q(0)| = \prod \frac{\alpha_i^*}{R} \leq \left(\frac{2}{\pi} \right)^N \)
if \(N \) is the number of zeros.
Since \(\frac{f(z)}{q(z)} \) is regular in \(|z| \leq R \)
and \(|q(z)| = 1 \) on the boundary, we
have
\[
\left(\frac{2}{\pi} \right)^N |f(0)| \leq \frac{f(0)}{q(0)} \leq N,
\]
which gives the bound above.

Using Stirling's formula
\[
\log P(z) = \left(z - \frac{1}{2} \right) \log z - z + \log \sqrt{2\pi} + O(z^{-1}),
\]
valid outside any angle which contains
the negative real axis in its interior, we
get easily from our earlier estimations...
of \(\zeta(s, x) \) and \(\xi(s) \) for \(0 \leq s \leq 1 \) that for \(|s - 2| < 2R \), \(\xi(s) \) is bounded by \(O(R^R) \) and \(\xi(s, x) \) by \(O(R \log R R) \). So the number of zeros in \(|s - 2| < R \) is found to be \(O(R \log R R) \).

More precise results are obtained by following the variation of the argument of \(\xi(s) \) or \(\xi(s, x) \) around the rectangle with the vertices

\[2, 2+iT, -1+iT, -1 \]

We shall denote the number of zeros in this rectangle by

\[N(T) \] for \(\xi(s) \) (or \(\xi(s, x) \)) and

\[N(T, x) \] for \(\xi(s, x) \) (or \(\xi(s, x, y) \)) and counting zeros that may lie on the short sides of the rectangle with one-half their multiplicity.
We may consider the variation of the argument of \(\xi(s) \) or \(\xi(s, x) \) from \(\frac{1}{2}, 2, 2 + \delta T, \frac{1}{2} + i T \), and the upper half of the rectangle will add the same amount by virtue of the functional equation.

A factor
\[
\pi^{-\frac{1}{2}} \frac{q^s}{\phi(s)} \left(\frac{q^s}{\phi(s)} \right) \text{ or } \pi^{-\frac{1}{2}} \frac{q^s}{\phi(s)} \Gamma\left(\frac{s+1}{2} \right)
\]
gives in both cases that the argument increases from \(\frac{1}{2} \) to \(\frac{1}{2} + i T \) by
\[
\frac{T}{2} \left(\log \frac{q^s}{2\pi} - 1 \right) + O(1).
\]
Also the variation of the argument of \(\xi(s) \) or \(\xi(s, x) \) on \(\sigma = 2 \) is seen to be bounded since
\[
\Re \xi(s, x) \geq 1 - \sum_{p \leq x} \frac{1}{p^2} = 2 - \frac{\pi^2}{6} > \frac{1}{3}.
\]

It remains to estimate the variation of the argument of \(\xi(s) \) or \(\xi(s, x) \) on the rectangle \(2 + iT, \frac{1}{2} + iT \) and \(\frac{1}{2}, 2 \). We assume at first that one zero \(\rho = \beta + i \gamma \) has \(\gamma = T \) and we look at
\[f(z) = L(2 + iT - z, x) + L(2 + iT - z, x), \]

we have \(|f(0)| > \frac{M}{3} \) and in the circle \(|z| \leq \frac{T}{4} \) we have
\[|f(z)| < \frac{c}{f(1 + T)}. \]

Thus by our earlier lemma, the number of zeros of \(f(z) \) in \(|z| \leq \frac{T}{4} \)
is bounded by
\[n < c \log f(2 + T). \]

But the zeros on the positive real axis are simply the points \(\text{where} \]
\[L(2 + iT - z, x) \] is purely imaginary.

Between these the argument of \(L \)
can vary at most \(\pi \) so the total variation of \(L(0 + iT, x) \) when \(0 \) goes
from \(2 + \frac{T}{2} \) to \(0 \leq (n + 2) \pi \)
\[= O(\log f(2 + T)). \]

A similar argument on the sketch \((\frac{T}{2}, 2) \) gives \(O(\log f) \).

The total variation around the rectangle is thus
\[T \left(\log \frac{q^T}{2\pi} - 1 \right) + \Theta \left(\log q^{(2+T)} \right) \]

dividing by \(2\pi \), we find

\[NCT, \mathcal{X} = \frac{1}{\sqrt{\pi}} \left(\log \frac{q^T}{2\pi} - 1 \right) + \Theta \left(\log q^{(2+T)} \right) \]

which holds whether \(\mathcal{X} \) is even or odd, and also in the case \(\mathcal{O} = 1 \), for \(NCT \).

Now clear that

\[\xi(s) = c'e^{c\mathcal{X}} \sqrt{\frac{1}{\pi}} (1 - \frac{\mathcal{X}}{\mathcal{P}}) e^{\frac{\mathcal{X}}{\mathcal{P}}} \]

and

\[\xi(s, \mathcal{X}) = c'e^{c\mathcal{X}} \sqrt{\frac{1}{\pi}} (1 - \frac{\mathcal{X}}{\mathcal{P}}) e^{\frac{\mathcal{X}}{\mathcal{P}}} \]

where in each case \(\mathcal{P} \) runs through the zeros of the function on the left-hand side and \(c' \) and \(c \) constants and the \(c' \mathcal{X} \) and \(c \mathcal{X} \) constants depending on \(\mathcal{X} \) only. Product-formulas can also be given for \(\xi(s) \) and \(L(s, \mathcal{X}) \). We shall instead look at the logarithmic
derivative
\[
\frac{\xi'}{\xi} \lambda \gamma = c'' - \frac{1}{s-\xi} + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right) + \sum_{\alpha=1}^{8} \left(\frac{1}{s-2\alpha} + \frac{1}{2\alpha} \right),
\]
and for \(\lambda \) primitive and even
\[
\frac{L'}{L} (\lambda, \chi) = c'' + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right) + \frac{1}{8},
\]

and \(\chi \) primitive odd,
\[
\frac{L'}{L} (\lambda, \chi) = c'' + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right) + \sum_{\alpha=1}^{8} \left(\frac{1}{s-2\alpha} + \frac{1}{2\alpha} \right),
\]

from our results about \(\pi (2, \chi) \)

It is easy to show
\[
\sum_{\rho} \left| \frac{1}{s-\rho} + \frac{1}{\rho} \right| = O \left(\log^2 (2 + \Re(s)) \right)
\]

for \(\Re(s) > \sigma > 1 + \delta \),
and
\[
\sum_{\rho} \left| \frac{1}{s-\rho} + \frac{1}{\rho} \right| = O \left(\log (2 + \Re(s)) \right)
\]
Let \(\alpha > 1 \), we have,

\[
\frac{1}{2\pi i} \int_{\alpha-i\infty}^{\alpha+i\infty} \frac{x^{s+1}}{s(s+1)} \, ds = 0 \text{ for } 0 \leq x \leq 1, \quad x-1 \text{ for } x > 1.
\]

Thus if

\[
\frac{1}{2\pi i} \int_{\alpha-i\infty}^{\alpha+i\infty} \frac{x^{s+1}}{s(s+1)} \, ds = \sum_{\nu \in \mathbb{N}} \frac{(x-\nu)c_{\nu}}{\nu x}
\]

is absolutely convergent for \(\sigma > 1 \), then

\[
\frac{1}{2\pi i} \int_{\alpha-i\infty}^{\alpha+i\infty} \frac{x^{s+1}}{s(s+1)} \, ds = \sum_{\nu \in \mathbb{N}} \frac{(x-\nu)c_{\nu}}{\nu x} = \int_0^x \left(\sum_{\nu \in \mathbb{N}} \frac{c_{\nu}}{\nu t} \right) \, dt.
\]

We define \(\Lambda(x) = \operatorname{log} p \) for \(m = p^n, n > 0 \).

(Non-Harmonic function).

Then

\[
\sum_{\nu} \frac{\Lambda(\nu)}{\nu^s} = -\frac{\zeta'}{\zeta}(s),
\]

and

\[
\sum_{\nu} \chi(\nu) \frac{\Lambda(\nu)}{\nu^s} = -\frac{L'}{L}(s, \chi).
\]

Write \(\psi(x) = \sum_{m \leq x} \Lambda(m) \),

and

\[
\psi_{\chi}(x) = \sum_{m \leq x} \chi(m) \Lambda(m),
\]
\[
\int_0^x \psi(t) \, dt = \sum_{\alpha} \left(x - \alpha \right) \Lambda(\alpha)
\]
\[
= \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} \frac{x^{s+1}}{s(2\pi i)} \left(-\frac{1}{s} \right) \, ds.
\]

Here we may use the previous expansion for \(-\frac{1}{s}\) and can integrate term by term since integral exists if we take absolute values everywhere. We get easily
\[
\int_0^x \psi(t) \, dt = \frac{x^2}{2} - \sum_{\rho} \frac{x^{\rho+1}}{\rho (\rho+1)} + O(x),
\]
and similarly
\[
\int_0^x \psi(x) \, dt = - \sum_{\rho} \frac{x^{\rho+1}}{\rho (\rho+1)} + O(x),
\]
where the \(\rho\) run through the zeros of \(\xi(s)\) or \(\xi(s, x)\) respectively.

To proceed we need to show that neither \(\xi(s)\) or any of the \(\xi(s, x)\) have a zero with real part 1. For \(\sigma > 1\) we have
\[R(-3 \frac{3}{2} \sigma + n, \lambda) = 4 \frac{1}{\lambda} (\sigma + i t, \chi) - \frac{1}{\lambda} (\sigma + 2i \epsilon, \chi^2) \geq 0. \]

If either \(t \neq 0 \) or \(\chi^2 \neq \chi_0 \), we get easily a contradiction if \(1 + i \epsilon \) is a zero of \(L(\sigma, \chi) \), by letting \(\sigma \to 1 \)
and seeing that the left-hand side of the above equation then would tend to \(-\infty\).

In the case \(t = 0 \), \(\chi^2 = \chi_0 \), we look at
\[\xi(\sigma) \zeta(\sigma, \chi) \]
and see that
\[\xi(\sigma) \zeta(\sigma, \chi) = \sum \frac{c_m}{m^s} \text{ with } c_m \geq 0, c_m > 0? \]

If \(\zeta(\sigma, \chi) \) has a zero at \(s = 1 \), then
\[\xi(\sigma) \zeta(\sigma, \chi) \]
is an integral function.

As its power-series around \(s = 2 \) converges everywhere, the \(\ell^\text{th} \)
coefficient is in absolute value
\[\frac{1}{\ell!^{(s)}} \xi(s) \zeta(s, \chi) \]
\[\geq \frac{1}{\ell!} \sum_{m = 1}^{\infty} \frac{c_m \log m^\ell}{m^2} \frac{1}{k!} \sum_{m = 1}^{\infty} \frac{c_m \log^2 m}{m^4} \]
comparing this to the k'th coefficient in the power series of \(g(z) \) around \(z = 2 \) we find that to be in absolute value
\[
\frac{1}{k!} \sum_{n} \frac{2^k \log^k n}{a^k y^k}
\]
but this power series can not converge beyond \(s = \frac{1}{2} \) since \(g(z) \) has a pole there. This gives us a contradiction so \(L(1, s) \neq 0 \).

From this we now easily conclude
\[
\int_{0}^{x} y(t) \, dt = \frac{x^2}{2} + o(x^2)
\]
and
\[
\int_{0}^{x} y_x(t) \, dt = o(x^2).
\]
All that is needed is to show that in each case
\[
\sum_{\rho} \frac{x^\beta + 1}{(\rho(\rho + 1))} = o(x^2)
\]
where \(\rho = \beta + i \gamma \).

We can always choose \(T \) so large that
\[
\sum_{|\gamma| > T} \frac{x^\beta + 1}{(\rho(\rho + 1))} < \frac{\varepsilon}{x}
\]
if \(\varepsilon \) is a given positive quantity.
Then
\[\sum_{p} \frac{x^{\beta+1}}{\phi(p)(p+1)} < \sum_{\gamma | T} \frac{x^{\beta+1}}{\phi(p)(p+1)} + \varepsilon x^2, \]

Since in the finite sum \(\gamma | T\), all exponents \(\beta+1 < 2\), this will be \(\varepsilon x^2\) for \(x\) sufficiently large. So
\[\sum_{p} \frac{x^{\beta+1}}{\phi(p)(p+1)} < \varepsilon x^2 \]
for \(x > x_0\), which proves the asymptotic relations.

If we write
\[\psi_{q,2}(x) = \sum_{\substack{1 \leq n \leq x \\ \Omega(n) = 2(q)\delta(n)}} \Lambda(n) \]

We see that
\[\psi_{q,2}(x) \] differs only slightly from
\[\frac{1}{\phi(q)} \sum_{q' | q} \sum_{q'' | q'} x(q') \psi_{n}(x) \]
(The difference being \(\leq \psi(q) \log x\)
\(n(q)\) being \(m\) of primefactors of \(q\).)
From this we get easily
\[\int_0^x \Psi_{q,e}(t) \, dt = \frac{1}{\phi(q)} \frac{x^2}{2} + o(x^2) \]

in addition to our previous
\[\int_0^x \Psi(t) \, dt = \frac{x^2}{2} + o(x^2) \]

From these relations
\[\Psi(x) = x + o(x) \]

and
\[\Psi_{q,e}(x) = \frac{1}{\phi(q)} x + o(x) \]

follow easily, we have
\[\frac{1}{h} \int_{x-h}^{x+h} \Psi(t) \, dt \leq \Psi(x) \leq \frac{1}{h} \int_{x-h}^{x+h} \Psi(t) \, dt \]

\[x - h - \frac{1}{h} o(x^2) \leq \Psi(x) \leq x + h + \frac{1}{h} o(x^2) \]

Take \(h = \frac{3}{2} x \) and \(x \) so large

that \[\frac{3}{2} x o(x^2) < \frac{3}{2} x \], and we get

\[x - 3x \leq \Psi(x) \leq x + 3x \]

for \(x > x_0 \). Similarly for \(\Psi_{q,e}(x) \).