
Given two parabolic subgroups P and Q such that $P \subset Q$ we have defined τ_P^Q (resp. τ_P^{-Q}) to be the characteristic function of the set of $H \in \mathfrak{g}_P^Q$ such that $\alpha(H) > 0$ for all $\alpha \in \Delta_P^Q$ (resp. $\pi(H) > 0$ for all $\pi \in \Delta_P^{-Q}$). By abuse of notation we also consider them as functions on \mathfrak{g}_P depending only on the projection on \mathfrak{g}_P^Q.

When P and Q are ε-invariant we define $\varepsilon \tau_P^Q$ (resp. $\varepsilon \tau_P^{-Q}$) to be the restriction to $(\mathfrak{g}_P^Q)_\varepsilon$ the subset of ε-invariant vectors. They will also be considered as functions on $\mathfrak{g}_P^\varepsilon$ and even on $\mathfrak{g}_0^\varepsilon$. We introduce a new functions on $(\mathfrak{g}_P^Q)_\varepsilon \times (\mathfrak{g}_P^Q)_\varepsilon$:

$$\varepsilon \Gamma_P^Q(H, X) = \sum_{P \subset R \subset Q \\varepsilon(R) = R} (-1)^{\varepsilon R - \varepsilon Q} \varepsilon \Gamma_R^Q(H) \varepsilon \Gamma_R^Q(H-X).$$

The key observation for all that follows is the

LEMMA 13.1.1.

(i) Assume that X remains in a compact subset ω then

$$H \rightarrow \varepsilon \Gamma_P^Q(H, X)$$

is supported in a compact subset of $(\mathfrak{g}_P^Q)_\varepsilon$ independent of $X \in \omega$.

(ii) If X is regular then

\[H \longrightarrow \varepsilon P^Q(H, X) \]

is the characteristic function of the set of \(H \in (\mathcal{P}^Q)_{\varepsilon} \) such that

\[a(H) > 0 \text{ for all } \alpha \in \mathcal{A}^Q_P \]
\[\varpi(H) \leq \omega(X) \text{ for all } \varpi \in \mathcal{A}^Q_S \].

(iii) \(\varepsilon P^Q(H, 0) = \delta_P^Q \) (the Kronecker symbol).

Given H we define \(S = S_H \) to be the \(\varepsilon \)-invariant parabolic subgroup \(S \) between \(P \) and \(Q \) such that

\[\mathcal{A}^S_P = \{ \alpha \in \mathcal{A}^Q_P | a(H) > 0 \} \].

We have

\[\varepsilon P^Q(H, X) = \sum_{P \subseteq R \subseteq S \subseteq (R) = R} (-1)^{a_R - a_S} \varepsilon R^Q(H-X). \]

This is non-zero only if \(\varpi(H-X) > 0 \) for all \(\varpi \in \mathcal{A}^Q_S \) and \(\varpi(H-X) \leq 0 \) for all \(\varpi \in \mathcal{A}^Q_P - \mathcal{A}^Q_S \). Choose \(X_1 \in (\mathcal{P}^Q)_{\varepsilon} \) such that

\[a(X_1) \leq \inf_{X \in \omega \cup \{0\}} a(X) \]

for all \(\alpha \in \mathcal{A}^Q_P \). Since \(a(H) > 0 \geq a(X_1) \) for \(\alpha \in \mathcal{A}^S_P \) and \(\varpi(H) > \varpi(X) \geq \varpi(X_1) \) for \(\varpi \in \mathcal{A}^Q_S \) we have \(\varpi(H) > \varpi(X_1) \) for all \(\varpi \in \mathcal{A}^Q_P \). In the same way,
replacing \(\inf \) by \(\max \) and changing the sense of inequalities we define \(X_2 \); then for all \(\varpi \epsilon \Delta_P^Q \) we have

\[
\varpi(X_1) < \varpi(H) \leq \varpi(X_2)
\]

whenever \(\epsilon^Q_P(H, X) \neq 0 \) and \(X \epsilon \omega \). Assertion (i) follows.

Consider now a fixed \(X \) such that \(a(X) \geq 0 \) for all \(a \epsilon \Delta_P^Q \), then we may take \(X_1 = 0 \) and \(X_2 = X \); this implies \(S_H = Q \) if \(\epsilon P^Q(H, X) \neq 0 \) and assertion (ii) follows.

If \(X = 0 \) we may take \(X_1 = X_2 = 0 \) and this implies \(S_H = Q \) and \(S_H = P \) if \(\epsilon P^Q(H, 0) \neq 0 \). This yields assertion (iii). \(\square \)

Remark: Assertion (iii) above has already been proved, with other notations, in Lecture 2; see 13.1.2. below.

We now introduce matrices of function on \(\pi_0^e \) whose entries are indexed by pairs of \(e \)-invariant parabolic subgroups: let \(e^r = (e^r_P, Q) \) be such that

\[
e^r_P, Q = 0 \quad \text{if} \quad P \not\subset Q
\]

\[
e^r_P, Q = (-1)^{a_P^e} e^r_P, \quad \text{if} \quad P \subset Q
\]

considered as functions on \(\pi_0^e \). In the same way we define \(\hat{e}^r \). Assertion (iii) in the above lemma yields the

COROLLARY 13.1.2. \(e^r \hat{e}^r = 1 \). \(\square \)
We introduce a matrix \(\Gamma = (\Gamma_{P,Q}) \) whose entries are such that

\[
\Gamma_{P,Q} = 0 \quad \text{if} \quad P \notin Q \\
\Gamma_{P,Q} = (-1)^{a_P - a_Q} \Gamma_{Q,P} \quad \text{if} \quad P \subset Q.
\]

Using the definition of \(\gamma_Q \) we see that

\[
\gamma_{(H, X)} = \gamma_{(H)} \gamma_{(H-X)}.
\]

Lemma 13.1.3.

\[
\gamma_Q(H-X) = \sum_{P \subset R \subset Q, \varepsilon(R) = R} (-1)^{a_R - a_Q} \gamma_{(H)} \gamma_{(H-X)}.
\]

Using Corollary 13.1.2 we see that

\[
\gamma(H-X) = \gamma(H)^{-1} \gamma(H, X) = \gamma(H) \gamma_{(H, X)} \quad \square
\]

Since \(H \rightarrow \gamma_Q(H, X) \) is compactly supported on \((a_Q^0)^\varepsilon\)

the integral

\[
\gamma_Q(\lambda, X) = \int \gamma_Q(H, X)e^{\lambda(H)} d\text{H}
\]

is convergent for all \(\lambda \in \mathcal{A}_0^* \otimes \mathcal{C} \) and defines an analytic function. We want to compute \(\gamma_Q \). We define \(\Delta_Q \) to be the set of restrictions to
of ε-orbits of elements in Δ^Q_P. Given $\alpha \in \Delta^Q_P$ the coroot $\check{\alpha}$ lies in $(\alpha^Q_P)^\varepsilon$. We define

$$\varepsilon^Q_P = |\det(\check{\alpha}, \check{\beta})|^{\frac{1}{2}} \quad \alpha, \beta \in \Delta^Q_P$$

and

$$\varepsilon^\theta_P(\lambda) = (\varepsilon^Q_P)^{-1} \prod_{\alpha \in \Delta^Q_P} \lambda(\check{\alpha})$$

Now assume that $\text{Re}(\lambda(\check{\alpha})) < 0$ for all $\alpha \in \Delta^Q_P$, then

$$\int_{(\alpha^Q_P)^\varepsilon} \varepsilon^\tau_P(H)e^{\lambda(H)}dH = \varepsilon^\theta_P(\lambda)^{-1}$$

Replacing roots by weights we define ε^δ_P, $\varepsilon^\varepsilon_P$, and ε^θ_P is the Laplace transform of ε^τ_P. This yields the following expression for ε^γ_P:

Lemma 13.1.4.

$$\varepsilon^\gamma_P(\lambda, X) = \sum_{P \in R \subset Q \quad \varepsilon(R) = R} a^\varepsilon_R a^\varepsilon_R \lambda(X^Q_R) \varepsilon^\theta_R(\lambda)^{-1} \varepsilon^\theta_R(\lambda)^{-1}$$

where X^Q_R is the projection of X on $(\alpha^Q_R)^\varepsilon$.

The left-hand side is analytic, the right-hand side is meromorphic and hence they are equal everywhere and the singularities of the right-hand side cancel. \Box
Letting $\gamma^Q_P(X) = \gamma^Q_P(0, X)$ we have the

Lemma 13.1.5. The function

$$X \longrightarrow \gamma^Q_P(X)$$

is a homogeneous polynomial of degree $k = a^P - a^Q$ given by

$$\frac{1}{k!} \sum_{P \subset R \subset Q} (-1)^{a^P - a^Q} \lambda^k (\epsilon^Q_R \lambda) k \hat{\theta}^P(\lambda)^{-1} \hat{\theta}^Q_R(\lambda)^{-1}$$

well defined if λ is not a singular value of $\hat{\theta}(\lambda)^{-1}$ or $\hat{\theta}(\lambda)^{-1}$, and independent of λ.

It is clear that $X \longrightarrow \gamma^Q_P(X)$ is analytic and homogeneous of degree $k = a^P - a^Q$ and it is easy to compute the limit

$$\gamma^Q_P(0, X) = \lim_{t \to 0} \gamma^Q_P(t\lambda, X)$$

when λ is not a singular value for $\hat{\theta}(\lambda)^{-1}$ or $\hat{\theta}(\lambda)^{-1}$. □

13.2. The trace formula as a polynomial.

The left-hand side of the trace formula for the group G and the function ϕ is a sum over $\sigma \in \theta$ of terms $\int^{G, T}_G (\phi)$ which are the integral over $G \setminus G^1$ of $\int^{G, T}_G (\phi, x)$ which in turn are the sums over ϵ-invariant parabolic subgroups $P \subset G$ (standard) of

$$(-1)^{a^P - a^Q} \sum_{\delta \in P \setminus G} \hat{\gamma}_P(\delta x - T) K^{\epsilon, \phi}_P, \sigma(\delta x, \delta x)$$
where

\[K_{P, \sigma}^\epsilon, \phi(x, y) = \sum_{\gamma \in M_P \cap \sigma \cap N_P} \int \phi(x^{-1} \gamma n e(y)) \, dn. \]

It was proved in Lecture 4 that the integral over \(G \setminus G' \) is convergent provided \(T \) is suitably regular uniformly if \(\phi \) varies in some compact set of functions.

We want to compute \(J^{G, T+X} \) in terms of \(J^{Q, T} \) where \(Q \) runs over \(\epsilon \)-invariant parabolic subgroups. Using 13.1.3 we see that

\[
J^{T+X}_{\sigma}(\phi, x) = \sum_{P \subset Q} (-1)^{a_P - a_Q} \sum_{\epsilon(P) = P, \epsilon(Q) = Q} \int_{Q/H(\xi x), X} \int_{P/H(\delta \xi x)-T} K_{P, \sigma}^\epsilon, \phi(\delta \xi x, \delta \xi x).
\]

But if \(x = nmk \) with \(n \in N_Q, m \in M_Q \) and \(k \in K \) we have (if \(P \subset Q \))

\[K_{P, \sigma}^\epsilon, \phi(x, x) = K_{P, \sigma \cap Q}^\epsilon, \phi^k(m, m) \]

where

\[\phi^k_Q(m) = \delta_Q(m)^{1/2} \int \phi(m^{-1} n m e(k)) \, dn. \]

Using the fact that the left-hand side of the trace formula is convergent
for \((Q, \phi_Q^k)\) uniformly for \(k \in K\) provided \(T\) is suitably regular we get when \(T\) and \(X\) are suitably regular

\[
\varepsilon^{G, T+X}_\sigma(\phi) = \sum_{\varepsilon(Q) = Q} \varepsilon^{G}_Q(\phi_Q) \varepsilon^{J, T}_\sigma \cap Q(\phi_Q)
\]

where

\[
\phi_Q = \int_{\phi_Q^k} \frac{dk}{K}
\]

The right-hand side is a polynomial in \(X\) and this allows one to define \(\varepsilon^{G, T}_\sigma(\phi)\) for all \(T\) as a polynomial in \(T\) of degree \(a_R^\varepsilon - a_G^\varepsilon\) where \(R\) is any \(\varepsilon\)-invariant parabolic subgroup whose rank is minimal for the property \(K_{R, \sigma}^{\varepsilon, \phi} \neq 0\).

A cuspidal datum \(\chi\) is a conjugacy class of pairs \((\pi, M_P)\) where \(\pi\) is a cuspidal automorphic representation for \(M_P\) the Levi subgroup of a standard parabolic subgroup. If one considers the partial spectral decomposition indexed by cuspidal data one is led to introduce partial kernels \(K_{P, \chi}(x, y)\) and one can show, using a refinement of the results in Lectures 7 and 8, that provided \(T\) is sufficiently regular

\[
\varepsilon^{G, T}_\chi(\phi, x) = \sum_{\varepsilon(P) = P} (-1)^{a_P^\varepsilon - a_G^\varepsilon} \sum_{\delta \in P \setminus G} \varepsilon^{x_P(H(\delta x) - T)K_{P, \chi}^\varepsilon(x, \delta x)}
\]

is integrable over \(G \setminus G^1_{\varepsilon}\); we shall denote by \(\varepsilon^{G, T}_\chi\) its integral. As above we get
\[\varepsilon^J_{\chi, T+X}(\phi) = \sum_{\varepsilon(Q)=Q} \varepsilon^G_{Q(x)} \varepsilon^J_{\chi}(\phi) \]

provided \(T \) and \(X \) are suitably regular. The right-hand side is a polynomial in \(X \) of degree \(a^\varepsilon_R - a^\varepsilon_G \) where \(R \) is any \(\varepsilon \)-invariant parabolic subgroup whose rank is minimal for the property \(K_{R, \chi} \neq 0 \).

13.3. Changing the minimal parabolic.

Let \(\Omega^G, \varepsilon \) be the subgroup of \(\varepsilon \)-invariant elements in the Weyl group; let \(w \in G \) be an element which represents \(s \in \Omega^G, \varepsilon \). Simple changes of variable yield

\[\varepsilon^J_T(\phi) = \int_{G \setminus G^1_{\varepsilon}} \sum_{\varepsilon(P)=P} (-1)^{a^\varepsilon_P} \sum_{\delta \in w^{-1}(P) \setminus G} \varepsilon^\tau_P(H(w\delta x)-T)K_{w^{-1}(P)}(\delta x, \delta x) \]

where \(w^{-1}(P) = w^{-1}Pw \) and where \(K_{w^{-1}(P)} \) is defined in an obvious way.

It is natural to define \(\varepsilon^\hat{\tau}_{w^{-1}(P)} \) such that

\[\varepsilon^\hat{\tau}_{w^{-1}(P)}(H) = \varepsilon^\tau_{w^{-1}(P)}(w^{-1}(H)) \]

If \(y = nma_k \) is a Langlands-Iwasawa decomposition corresponding to \(Q = w^{-1}(P_0) \) we define \(H_Q \) such that \(H_Q(y) = H(a) \) and hence

\[w^{-1}H(wy) = H_Q(y) + w^{-1}H(w) \]

and

\[\varepsilon^\hat{\tau}_P(H(wy)-T) = \varepsilon^\hat{\tau}_{w^{-1}(P)}(H_Q(y)-T_Q) \]
where $T_Q = w^{-1}(T-H(w))$. With these notations we get

$$e^{J^T(\phi)} = \int \sum_{G \backslash G^i} \sum_{\varepsilon(R) = R} \sum_{\delta \in R \backslash G} R \supset Q \varepsilon^R \left[H_Q(\delta x)^{-T}Q \right]K^R_x(\delta x, \delta x)$$

which can be written

$$e^{J^T(\phi)} = e^{J^T_Q(\phi)}$$

where $e^{J^T_Q}$ is the trace formula computed using the minimal e-invariant parabolic subgroup Q in place of P_0.

13.4. Action of conjugacy.

We now want to compare $J^T(\phi)$ with $J^T(\phi^y)$ where

$$\phi^y(x) = \phi(yx \varepsilon(y)^{-1})$$

We have

$$J^T(\phi^y) = \int \sum_{G \backslash G^i} \sum_{\varepsilon(P) = P} \sum_{\delta \in P \backslash G} P \supset P_0 \varepsilon^P \left[H(\delta xy)^{-T} \right]K^P_x(\delta x, \delta x)$$

but

$$H(\delta xy) = H(\delta x) + H(k(\delta x)y)$$
where \(k(\delta x) \) is the \(K \)-component of an Iwasawa decomposition of \((\delta x) \).

Using 13.1.3 we are led to introduce

\[
\varepsilon^Q_T(x, y) = \int_{\varepsilon Q \setminus \alpha^Q_T} \varepsilon^Q_T(H, -H(k(x)y))dH
\]

and

\[
\phi_Q, y(m) = \delta_Q(m) \frac{1}{4} \int_{\mathbb{K}} \int_{\mathbb{N}_Q} \phi(k^{-1}mn\varepsilon(k)) \varepsilon^G_{Q, y}dkdn
\]

with these notations we obtain as in 13.2

\[
\varepsilon^G_T(\phi^y) = \sum_{\varepsilon(Q) = Q} \varepsilon^Q_T(\phi_Q, y).
\]

13.5. On some regularity property.

In 13.1 we introduced

\[
\varepsilon^Q_T(\lambda, X) = \int_{(\mathbb{K}^Q)^\varepsilon} \varepsilon^Q_T(H, X)e^{\lambda(H)}dH.
\]

We shall now study this function when \(\lambda \) is imaginary. Consider \(D \) a differential operator with constant coefficients on \(i(\alpha^Q_T)^{\varepsilon\varepsilon} \) then if \(\lambda \in i(\alpha^Q_T)^{\varepsilon\varepsilon} \) we have

\[
|D^\varepsilon^Q_T(\lambda, X)| \leq \int_{(\mathbb{K}^Q)^\varepsilon} |P_D(H)\varepsilon^Q_T(H, X)|dH
\]

where \(P_D \) is the polynomial associated to \(D \). Using that

\[
\Gamma(tH, tX) = \Gamma(H, X)
\]
for \(t \in \mathbb{R}_+^x \) and Lemma 13.1.1(i) it is not difficult to see that

Lemma 13.5.1.

\[
|D_{\epsilon} \gamma_P^Q(\lambda, X)| < c(1 + \|X\|)^N
\]

for some \(N \) independent of \(\lambda \) when \(\lambda \) is imaginary. \(\square \)

In other words, \(X \rightarrow \gamma(\lambda, X) \) is a "slowly increasing" function.

Now consider \(\varphi \) a Schwartz-Bruhat function on \(i(\alpha_P^Q)^* \epsilon \), let \(\hat{\varphi} \)
be its Fourier transform so that

\[
\varphi(\lambda) = \int_{i(\alpha_P^Q)^* \epsilon} \hat{\varphi}(H)e^{\lambda(H)}dH.
\]

We define

\[
\epsilon \gamma_P^Q(\lambda, \varphi) = \int_{i(\alpha_P^Q)^* \epsilon} \hat{\varphi}(X) \epsilon \gamma_P^Q(\lambda, X)dx.
\]

This makes sense also when \(\hat{\varphi} \) is a "rapidly decreasing" distribution.

Lemma 13.5.1 above shows that on \(i(\alpha_P^Q)^* \epsilon \) the function

\[
\lambda \rightarrow \epsilon \gamma_P^Q(\lambda, \varphi)
\]

is smooth and by 13.1.4 we obtain the following expression

\[
\epsilon \gamma_P^Q(\lambda, \varphi) = \sum_{P \in R \subseteq Q \subseteq \mathcal{L}} (-1)^{a_R^{\epsilon} - a_R^{\epsilon}} \varphi_{\epsilon \gamma_P^Q}(\epsilon \lambda_R^Q)
\]

\[
\epsilon \delta_P^R(\lambda)^{-1} \epsilon \gamma_P^Q(\lambda)^{-1}
\]
which is valid at least when λ is imaginary and not a singular value of $\hat{\theta}(\lambda)^{-1}$ or $\theta(\lambda)^{-1}$ and where λ^Q_R is the projection of λ on $(\sigma^Q_R)^e \otimes \mathbb{C}$.

The left-hand side is smooth and hence the singularities of the right-hand side cancel when φ is any Schwartz-Bruhat function. This implies that more generally we have the

Lemma 13.5.2. Given any smooth function φ

$$
\sum_{P \in \mathcal{R} \subset \mathcal{Q}} (-1)^{\epsilon^P - \epsilon^Q} \varphi(\lambda^Q_R) \theta^R(\lambda)^{-1} \theta^Q(\lambda)^{-1}
$$

extends to a smooth function of $\lambda \in i(\sigma^Q_P)^e$. □