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Lecture 1. The Mobius Flow

The Mobius function µ(n), n = 1, 2, 3, . . . is defined by

(1) µ(n) =






1 if n = 1

0 if n is not square-free

(−1)t if n is a product of t distinct primes.

Its behavior is central in the theory of prime numbers. For example, the “orthogonality” of µ and
the function 1, meaning that

(2)
N�

n=1

µ(n) = o(N), as N →∞,

is elementarily equivalent to the prime number theorem. The more quantitative statement; for
� > 0

(3)
N�

n=1

µ(n) = O�(N
1/2+�)

is equivalent to the Riemann Hypothesis. The exponent 1/2 in (3) is often taken as an indication
that the µ(n)’s are random in some sense and much has been written about it. However, as with
any deterministic sequence at close enough inspection it is not random. For example, if N = ey

then as a function of y

(4) G(y) = N−1/2
�

n≤N

µ(n)
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is no doubt an unbounded B2-almost periodic function (see [Ng 1]). This is a reflection of the
existence and location of the zeros of the Riemann Zeta Function.

A well-known but vague principle concerning the randomness of µ(n) is that summing it against
any reasonable function ξ(n) leads to significant cancellations. This is called the “Mobius random-
ness law” in [I-K] and in [G-T] it is expressed by saying µ doesn’t correlate with any function of
low “complexity.” In general, this means that

(5)
�

n≤N

µ(n) ξ(n) = o

�
�

n≤N

|ξ(n)|
�

.

and in practice one often needs an explicit rate in the implied o notation, typically O((log N)−A)
for some A > 0. We limit ourselves to ξ’s which are bounded and not sparsely supported and ask
only for orthogonality, that is

(6)
�

n≤N

µ(n) ξ(n) = o(N) as N →∞.

One can view ξ being orthogonal to µ as a strong form of ξ not approximating µ. In [I-L-S]
it is shown that the above randomness principle is in some settings reliable up to square-root
cancellations but that similar heuristics concerning randomness for sums over primes are not.

One of the aims in these lectures is make some aspects of the Mobius randomness principle
precise by identifying the notions of reasonable or of low complexity. One might try doing so using
the modern notion of computational complexity. That is ξ is of low complexity if it is in the class
P (polynomial) meaning that each value of ξ(n) can be computed in O((log n)B) steps for some
B = B(ξ). This brings up the issue of whether µ itself is in P , which is apparently not known
[A-M]. There is a wide spread belief in cryptographic and computer science circles that factoring
is hard. There is no theoretical or scientific evidence for such a belief and I for one believe that
the opposite is true. In particular that µ is P . In this direction it would be interesting to give an
explicit ξ in P which is not orthogonal to µ or better still such that

(7) 1
N

�

n≤N

µ(n) ξ(n) → α > 0.

Such a ξ would serve as a probabilistic substitute for µ for various purposes. It is not hard to give
ξ’s in P for which (5) fails or that the limit in (6) is approached slowly. For example if ξ(n) = −1
if n is a prime and is 0 otherwise, then ξ ∈ P [A-K-S] and
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(8) 1
N

�

n≤N

ξ(n)µ(n) =
1

N

�

n≤N

|ξ(n)| 1 ∼ 1

log N
.

Given these remarks, our view is that computational complexity is not the correct notion for
examining µ-randomness.

The study of (6) when ξ is multiplicative, that is ξ(mn) = ξ(m)ξ(n) if (m, n) = 1, has received
a lot of attention because of its close connection to the theory of L-functions. In this case (6)
reduces to the behavior of ξ at the primes. For example, the general theorem of Wirsing [Wi]
implies that if ξ is multiplicative and −1 ≤ ξ(n) ≤ 1 then ξ is orthogonal to µ iff the non-negative
series over the primes

�

p

1 + ξ(p)

p
, diverges.

However, if we replace the multiplicative function ξ(n) by ξ(n + a) or more generally by
ξ(n+a1)ξ(n+a2) · · · ξ(n+at) with 0 < a1 < a2 · · · < at, then saying anything about orthogonality
to µ is problematic. This is exemplified by considering the local correlations of µ with itself. The
following conjecture of Chowla [Ch] (see also [Ng2]) is very plausible and its only drawback is that
it is apparently very difficult having resisted any progress.

Conjecture 1: (Chowla):

Let 0 ≤ a1 < a2 < · · · < at and k1, k2 · · · kt in {1, 2} not all even, then as N →∞
�

n≤N

µk1(n + a1) µk2(n + a2) · · ·µkt(n + at) = o(N) .

We will use this conjecture as a working hypothesis which suggests what is likely to be true in
connection with the randomness principle. Our approach is to realize ξ(n) as the return times or
sampling sequence of a dynamical system. In this way the complexity of ξ(n) is measured by that
of the dynamics. This point of view has been developed by Furstenberg and we use the notions
and notations from his paper [F1] and Glasner’s book [GL]. A flow F is a pair (X, TX) where X is
a compact metric space and T : X → X is a continuous map. The sampling sequences associated
with a flow F are the sequences ξ(n) = f(T nx) for some x ∈ X and f ∈ C(X). In this case we
say that ξ is realized in the flow F . A given sequence ξ(n) can be realized in many flows and
we seek to realize it (and the sequences ξ(n + a1)ξ(n + a2) · · · ξ(n + at) derived from it) in the
simplest possible flow. If ξ(n) takes values in a finite set Λ ⊂ R then ξ(n) may be realized in the
full shift flow F = (Ω, T ) where Ω = ΛN with its product topology and T : Ω → Ω is the shift
Tx(n) = x(n + 1). Let ξ = (ξ(1), ξ(2), · · · ) ∈ Ω, π1(x) = x1, then ξ(n) is realized in FΛ with x = ξ
and f = π1. In fact ξ is realized in the potentially simpler flow Fξ = (Xξ, T ) where Xξ is the
closure in Ω of the orbit of ξ under T . We call this sub-flow of FΛ the shift flow determined by ξ.
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Note that if ξ(n) is realized in F and η(n) in G then ξ(n + a)η(n + b) is realized in the product
flow F ×G = (XF ×XG, TF × TG).

The basic measure of complexity of a flow F is its topological entropy h(F ) (see [A-K-M]
for definitions and properties). It is a measure of the exponential growth rate of the number of
distinct orbits in F . The flow is called deterministic if it has zero entropy. A sequence ξ(n) is
called deterministic if it is realized in a deterministic flow. The name comes from the similar
considerations in the probabilistic setting of dynamics which we call a process. We introduce it
since it will play a role later in our discussion. A process is a triple Fν = (X, T, ν) with X as before,
T : X → X a Borel measurable transformation and ν a T invariant Borel (probability) measure
i.e. ν(T−1A) = ν(A) for all measurable A. In this process setting the basic measure of complexity
is the Kolmogorov-Sinai entropy, h(Fν). A process Fν is of zero entropy iff it is deterministic in
the sense that for ν-almost all sampling sequences, ξ(1) is determined by ξ(2), ξ(3), ξ(4) · · · .

With this dynamical realization of sequences we can state our first result about the randomness
of µ(n).

Proposition 2: η(n) = µ2(n) and a-fortiori µ(n), is not deterministic.

This follows from the positivity of the entropy of the square-free flow S discussed below which
in turn is proved in Lecture 3. As far as orthogonality in (6) we make the following definition.

Definition 3: µ is orthogonal to a flow F if it is orthogonal to every sequence realized in F .

In connection with flows of positive entropy and sequences that can be realized by them, the
following result of Weiss [We] is worth keeping in mind. Let F be a subflow of positive entropy of
the full shift FΛ with Λ = {0, 1}, then there is a subset A of N of positive density such that the
restriction of XF to A consists of all sequences in ΛA. Thus we can’t expect µ to be orthogonal to
a typical positive entropy flow (though Bourgain [Bo1] shows that given a sequence �(n) satisfying
certain conditions such as µ(n), one can construct a positive entropy flow orthogonal to �). Our
fundamental conjecture concerning the randomness of Mobius is the following:

Conjecture 4: µ is orthogonal to any deterministic flow F and in particular to every determin-
istic sequence.

Lecture 2 is devoted to progress towards Conjecture 4 whose formulation is such that this can
be measured by establishing it for various classes of flows. In applications specific F ’s enter and
each case for which it is proved is hard earned. If F is the trivial flow (i.e. a single point) then
the Conjecture is no more than (2) which is the prime number theorem. If F is a finite flow
(i.e. XF is finite) then it is essentially the prime number theorem for arithmetic progressions. If
F is the rotation of the circle (XF = R/Z and Tαx = x + α) then Conjecture 4 was proved by
Davenport [Da] using the sieve and bilinear techniques of Vinogradov [Vi]. All further progress
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on the Conjecture is based on these techniques in one of their modern renditions ([Va], [I-K]).
Vinogradov’s methods are well suited to our dynamical setting requiring effective equidistribution
of the orbits of TF and its powers as well as the same for joinings of F with itself. Conjecture
4 is true for equicontinuous or Kronecker flows (a Kronecker flow K = (G, Tα) is translation on
a compact topological group G given by Tαx = x · α where α ∈ G) indeed these cases reduce to
Davenport’s Theorem. The next simplest flows are distal flows. F = (XF , TF ) is distal if given
distinct points x, y in XF , inf

n≥1
d(T nx, T ny) > 0. These flows are deterministic ([Pa]), they contain

the equi-continuous flows and Furstenberg [F2] shows how to build the general minimal such flow
by repeated isometric extensions, starting from the trivial flow. An interesting class of distal flows
are the homogeneous nilflows given by translations on compact nilmanifolds. As part of their
program on linear equations in primes, Green and Tao ([GT]) establish Conjecture 4 for these
nilflows. In Lecture 2 we establish Conjecture 4 for some nonhomogeneous distal skew products.
These are the typical building blocks in Furstenberg’s classification and proving Conjecture 4
for distal flows seems to be a ripe problem. For deterministic flows which are statistically more
complex, for example mixing, Conjecture 4 is apparently much more difficult. A critical case and
perhaps the most interesting one is that of a homogeneous flow coming from a unipotent translation
on a compact (or finite volume) quotient of a semi-simple Lie group. These flows are mixing
([Ma], [Mo]) and Ratner’s theorem ([Ra], [Wi]) yields the requisite rigidity and equidistribution
of orbits, however her proof is ineffective and applying Vinogrdov’s method is problematic. In
the simplest setting of G = SL2 [Ub-Sa] establish various results towards Conjecture 4 which we
describe in Lecture 2.

The distribution of orbits in a general deterministic flow can be quite irregular and one may
be skeptical about Conjecture 4. However the following shows that it is at least as realistic as
Conjecture 1.

Theorem 5: Conjecture 1 implies Conjecture 4.

The proof of this is entirely combinatorial and is given in Lecture 3. We persist in maintaining
Conjecture 4 as the central one even though it is much weaker than Conjecture 1. The point
is that Conjecture 4 refers only to correlations of µ with deterministic sequences and avoids the
difficulties associated with self correlations.

In Definition 3 it is important that we demand orthogonality for all sequences realized in F . If
we relax the condition to most x in the measure theoretic context of a process Fν = (XF , T, νF )
then such orthogonality is valid universally, i.e. for every Fν . Indeed, define the linear operator
LN on continuous functions on XF by

(9) LNf(x) = 1
N

N�

n=1

µ(n)f(T nx)
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LN extends to a bounded linear operator defined on L2(X, νF ). Using the spectral theorem for
the unitary operator UT on L2(X, νF ) given by UT f(x) = f(Tx) and Davenport’s exponential sum
bound (see Lectures 2) we have that for any h > 0

(10) � LN �2 �
2

(log N)−h,

(the implied constant depends only on h!) In particular, for g ∈ L2(X, νF ), LNg → 0 in L2(X, νF ).
Using the ergodic theorems in [Bo2] one can deduce further that LNg → 0 for νF -almost all x.

We return to Conjecture 4. Having realized the low complexity sequences in terms of determin-
istic flows it seems natural enough to realize µ(n) dynamically. This leads us to some interesting
flows and related processes and it also allows for a partial interpretation of Conjecture 4 in terms
of joinings. The sequence µ(n) defines a point which we denote by w in Ω(3) = {−1, 0, 1}N.

Definition 6: The Mobius flow M is the subflow of the full shift on Ω(3)
determined by w, that

is M = (XM , T ) with XM the closure of the T -orbit of w in Ω(3)
.

M is easily defined but saying something nontrivial about it is another matter. It is closely
related to two other flows; its square-free factor S and the full extension N of S to Ω(3).

Definition 7: The square-free flow S is the subflow of the full shift on Ω(2) = {0, 1}N
determined

by the point η = (µ2(1), µ2(2), · · · ), that is S = (XS, T ) with XS the closure of the T -orbit of η in

Ω(2)
.

The surjective map φ : XM → XS taking x = (x1, x2, . . .) to (x2
1, x

2
2, . . .) and taking w to η

realizes S as a factor of M (that is φ is continuous and TSφ = φTM). One can study S in some
detail and its salient properties as well as a central process associated with it, are described next.

Call a subset A of N admissible if its reduction mod p2 doesn’t cover all of the residue classes
mod p2 for every prime p. This condition is translation invariant, that is if A is admissible so is
A + k for any k ≥ 0. For y ∈ {0, 1}N denote by support(y) the subset of N at which y �= 0. The
set of all y ∈ Ω(2) whose support is admissible, is a closed T -invariant subset which we denote by
A. It is not hard to see that XS ⊂ A. The following theorem describes the dynamical properties
of S.

Theorem 8.

(i) XS = A.

(ii) Ts : XS → XS is surjective, it is topologically ergodic and h(S) = 6
π2 log 2.
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(iii) S is proximal (i.e. for any x, y ∈ XS, inf
n≥1

d(T n
x , T n

y ) = 0) and {(0, 0, 0 · · · )} is the unique

T -minimal subset of XS.

(iv) S has no nontrivial Kronecker factors but it has a nontrivial joining with K = (G, T ) where
G is the compact abelian group Π

p
(Z/p2Z) and Tx = x + (1, 1, · · · ). In particular, S is not

weak-mixing.

The key point is part (i) identifying XS with A. Once we have this it is clear that if Q is the set
of square-free numbers then the restriction of elements in XS to Q contains all zero one sequences
on Q. Thus Q is an explicit set satisfying Weiss’ independent condition in the discussion after
Definition 3. It is well-known that Q has density 6/π2. The entropy of S being (6/π2) log 2 says
that Q is a largest such independent set.

Part (i) of Theorem 8 is proven by showing that the orbit of η is equidistributed with respect
to a measure νS on Ω(2) whose support is A. To define νS we first define γ(A) for A is a finite
subset of N by

(11) γ(A) = Π
p

�
1− t(A, p2)

p2

�

where t(A, p2) is the number of distinct residue classes gotten by reducing A mod p2. The product
in (11) is over all the primes. Clearly γ(A) = γ(A + k) for k ≥ 0 and γ(A) > 0 iff A is admissible.
For disjoint finite subsets A and B of N set

(12) γ(A; B) =
�

A⊂D⊂A∪B

(−1)|D|−|A|γ(D).

Then γ(A; B) = γ(A + k,B + k) for k ≥ 0 and it is less clear but true, that γ(A; B) ≥ 0, with
equality iff A is not admissible (see Lecture 3 for a proof of this important last point). For A and
B as above define the cylinder set CA;B in Ω(2) by

(13) CA;B = {x : xa = 1 if a ∈ A, xb = 0 if b ∈ B}.

Finally define the Borel probability measure νS on Ω(2) by setting

(14) νS(CA;B) := γ(A; B).
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Clearly νS is T invariant and by the remarks above its support is A. Let Sν be the process (A, T, νs)
which we call the square-free process. We will prove the following in Lecture 3 using among other
things elementary sieve methods (see for example [Ts]).

Theorem 9:

(i) The T -orbit of η in Ω(2)
is νS equidistributed, that is for f ∈ C(Ω(2))

1

N

N�

n=1

f(T nη) →
�

A

f(y)dνS(y) ,

or using other terminology, η is νS-generic.

(ii) The process Sν is ergodic and deterministic (i.e. is of zero entropy).

(iii) The Kronecker process Kν = (XK , T, ν) where KK is the group Π
p
(Z/p2Z, T (x) = x+(1, 1, . . .)

and ν is Haar measure on XK, is a factor of Sν .

The quotient map realizing (iii) above has an explicit description. By ergodicity, for νS almost
all x ∈ A, the residue class mod p2 omitted by support (x) is unique for each prime p. This gives
a measurable map t : x → (x4, x9, . . .) which is a morphism from Sν onto Kν . The determinism in
part (ii) can be described using t. Given a νS-generic point x ∈ A, x1 is given in terms of Tx as
follows: If for some prime p t(Tx)p2 = 1 then x1 = 0, otherwise x1 = 1.

The second flow connected with the Mobius flow is the full extension of S to Ω(3) = {−1, 0, 1}N.
Let XN ⊂ Ω(3) consist of all x’s whose support is admissible. XN is closed, T -invariant and defines
a subflow N of the full shift Ω(3). The map φ : XN → XS which squares each coordinate gives
a morphism of N onto S, so that S is a factor of N . N is topologically ergodic and has entropy
equal to (6/π2) log 3. N inherits various properties from the factor S such as being nonmixing,
proximal and having {0} as its only minimal invariant subflow .

The statistical properties of interest are connected with a specific process on XN . Let νN be
the measure on Ω(3) defined on cylinder sets W by

(15) νN(W ) = 2−| support W | νS(φ(W )).

νN is shift invariant, its support is XN and it defines a process Nν = (XN , T, νN). Having
constructed Nν as a fully random extension of Sν the following properties of Nν follow from
Theorem 9.



Three Lectures on the Mobius Function Randomness and Dynamics” 9

(i) Nν is ergodic and h(Nν) = 6
π2 log 3.

(ii) Sν is the Pinsker factor of Nν that is Nν is a completely positive (entropy) extension of Sν

and Sν is its largest deterministic factor.

In order to examine the question of orthogonality in Conjecture 4 for the Mobius flow we need
to study various joinings. Let Yν be a deterministic process and consider the possible joinings of
Nν and Yν . They need not be disjoint since Nν has Sν as a factor. However, since Sν is the Pinsker
factor of Nν any common factor of Nν and Yν must factor through Sν . Let λ ∈ J(Nν , Yν) be a
joining of these processes. Using that Yν and all its self-products are deterministic and that Nν is
a completely positive extension of Sν together with the disjointness theorem [G-T-W], we conclude
that; If f ∈ C(XN) and its conditional expectation EνN (f |S) = 0 (where S is the σ-algebra on
XN corresponding to the factor Sν) and g ∈ C(XY ) then λ(f ⊗ g) = 0. Hence as in [F1] if n0 ∈ N
is νN -generic and y0 ∈ XY is νY -generic, then as L →∞.

(16) 1
L

L�

m=1

f(Tmn0) g(Tmy0) → 0.

In particular if Y is a uniquely ergodic deterministic flow with unique invariant measure νY , then
every point y ∈ XY is νy-generic and we can replace y0 by a general point y in (16).

Finally, we turn to the Mobius flow. M is a subflow of N and both have S as a factor. As a
corollary to Theorem 8 we have

Theorem 10:

(i) The entropy of M is positive and satisfies

6

π2
log 2 ≤ h(M) ≤ 6

π2
log 3 .

(ii) M is proximal and {0} is its only minimal subflow.

(iii) M has a nontrivial joining with the Kronecker flow K and in particular M is not weak

mixing.

The expectation is that XM = XN and hence that M = N (see below) but this appears to be
well beyond the reach of current techniques. Any result showing that M is a random extension of
S such as h(M) > h(S), would be very interesting. Apparently the only results in this direction
are those towards Conjecture 4 discussed in Lecture 2. One can formulate a relative version of
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Conjecture 4 (i.e. orthogonality of µ to any relatively deterministic extension of S) which implies
that h(M) > h(S).

The oldest conjecture that implies XM = XN is the Hardy-Littlewood k-tuple conjecture
([H-L]) (a similar remark about a related conjecture of Chowla for the Liouville function λ(n) fol-
lowing from Schinzel’s hypothesis H, is made in [C-F-M-R-S]). We know even less at the statistical
level as far as the Mobius flow goes. Again the expectation is clear enough.

Conjecture 11 The point w = (µ(1), µ(2), . . .) in XN is νN -generic.

In Lecture 3 we show that Conjecture 11 and Conjecture 1 are equivalent. Conjecture 11 implies
that M = N and places the processes Nν = Mν as central to the Mobius flow together with
its dense orbit corresponding to w. According to (16) and Conjecture 11 we have that for any
deterministic uniquely ergodic flow Y and any f ∈ C(XM) with E(f |S) = 0, g ∈ C(XY ) and
y ∈ XY

(17) 1
L

L�

m=1

f(Tmw)) g(Tmy) → 0, as L →∞.

Specializing further to f(x) = xk1
a1

xk2
a2
· · ·xkt

at
with kj ∈ {1, 2} not all even, so that EνM (f |S) = 0,

yields

(18) 1
L

L�

m=1

µk1(a1 + m) µk2(a2 + m) · · ·µkt(at + m) g(Tm
y ) → 0.

In particular it follows that µ is orthogonal to any deterministic uniquely ergodic flow Y . While this
doesn’t recover the full implication in Theorem 5 it gives an explanation in terms of disjointness
of a substantial part of the basic Conjecture 4: that the Mobius process Mν as an extension of Sν

is relatively disjoint from any deterministic process.
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