
SHIMURA VARIETIES AT INFINITE PLACES

ROBERT P. LANGLANDS

If a reductive group G over Q and a homomorphism h : S → G over R which satisfy the
axioms of Travaux de Shimura are given, then a weakly canonical model {SK/E} of the
family of Shimura varieties

SK(C) = G(Q)\G(A)/K∞K

must by definition be given over a subfield E of C. Two problems suggest themselves.
One suspects immediately and the suspicion is strongly reinforced by Kazhdan’s paper

Arithmetic varieties and their fields of quasi-definition that if τ is an automorphism of C
then {τSK/τE} is again a weakly canonical model for the family of Shimura varieties
associated to some pair {τG, τh}. The first problem is to describe {τG, τh} in terms of G,
h, and τ .

If E is real and τ is the complex conjugation then τ defines an involution on each of the
manifolds SK(C). the second problem is to describe this involution in terms of G and h. I
shall describe below the form I believe the solution to these two problems will take. One
might hope to prove that this form is correct for those families which can be treated by
the methods of Shimura and Deligne. In attempting to do so, I have been led to further
problems. At the moment these problems remain quite vague; I have not even been able to
guess the exact form their solutions might take.

The second problem has already been broached by Shimura and Shih. Unlike them, I
shall work with connected groups and use a strictly adelic formulation. This is just a matter
of temperament; I do not believe it detracts substantially from the generality.

The group τG will it be obtained from G by an inner twisting. This twisting will be
trivial except at infinity, so that

τG(Af ) = G(Af ).

K may therefore be regarded as a subgroup of τG(Af ).
If T is a torus in G let Tad be its image in Gad. I take T to be defined over Q and such

that Tad(R) is compact. Composing h with adx, x ∈ G(R), if necessary, we may suppose
that

h : S → T.

Then composing
GL(1)

GL(1)×GL(1) S
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with h we obtain a coweight µ̂ of T . If L̂(Tad) is the lattice of coweights of Tad then

L̂(Tad)/2L̂(Tad) ' H−1
(
G(C/R), L̂(Tad)

)
' H1

(
G(C/R), Tad(C)

)
.

The image of τ µ̂− µ̂ in the group on the left defines an element in the group on the right.
This gives the twisting cocycle at infinity.

This twisting does not depend on any of the choices made. To see this one combines
some simple fiddling around with 1-cocycles with the observation that if ω lies in the Weyl
group then ωµ̂− µ̂ gives a trivial twisting. If ω is the image of w in the normalizer of T
in G the corresponding 1-cocycle arises from the false twisting

T
w−→ T G

w−→ G.

Take F to be a large finite Galois extension of Q. The bottom row of the diagram

H1
(
G(C/R), Tad(C)

)

H1
(
G(F/Q), Tad(F )

)
H1
(
G(F/Q), Tad(AF )

)
H1
(
G(F/Q), L̂(Tad)⊗ CF

)
is exact. Moreover the diagram

H1
(
G(C/R), Tad(C)

)
H1
(
G(F/Q), L̂(Tad)⊗ CF

)

H−1
(
G(C/R), L̂(Tad)

)
H−1

(
G(F/Q), L̂(Tad)

)
in which the bottom arrow is given by λ̂ → λ̂ is commutative. Since τ µ̂ − µ̂ clearly has
image 0 in H−1

(
G(F/Q), L̂(Tad)

)
, there clearly is an element of H1

(
G(F/Q), Tad(F )

)
which

is trivial at every finite place and which is the given 1-cocycle at the infinite place. This
gives us the global twisting. By Hasse’s principle, it is well-defined.

τG comes equipped with T → τG. I now define τh. Let ρ be complex conjugation. Then
τh is the composition

S ' GL(1)×GL(1) T τG
(τµ̂,ρτµ̂) .

The roots of T can be classified as compact or non-compact with respect to G or with
respect to τG. The twisting changes the type of α if and only if

(−1)〈α,τµ̂−µ̂〉 = −1.
Thus α is compact or non-compact with respect to τG according as (−1)〈α,τµ̂〉 is 1 or −1. It
follows that (τG, τh) satisfies the axioms of Deligne.

Now suppose E is real and τ is complex conjugation. Then, if h is taken to factor
through T , there is an ω in the Weyl group of T so that

τ µ̂ = ωµ̂.

However τ µ̂ = −µ̂. Thus ω must take roots of type (0, 0) to roots of the same type and
roots of type (1,−1) to roots of type (−1, 1). (I use here the notation of Hodge structures,
favoured by Deligne.) I shall show in a moment that ω has a representative w in G(R).
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This element w normalizes K∞ and as uniquely determined modulo K∞. Thus the map
g → gw on G(A) yields upon passage to quotients a well-defined homomorphism of

SK(C) = G(Q)\G(A)/K∞K.

This should be the involution.
To establish the existence of w, I use the results and notation of Harish-Chandra’s

Representations of Semi-Simple Lie Groups IV §6. He introduces a set {γ1, . . . , γs} of
non-compact roots and associates to each γi a homomorphism

ϕi : SL(2)→ G

which is defined over R. Set

wi = ϕi

((
i 0
0 −i

))
The wi commute. Tentatively take

w0 =
s∏
i=1

wi.

w0 lies in G(C). However w0 does normalize T and takes γi to −γi. It therefore takes
positive non-compact roots to negative non-compact roots and its image in the Weyl group
is ω.

Since the roots γi are orthogonal 〈
γj,
∑
i

γ̂i

〉
= 2.

Here γ̂i is a coroot. Moreover
〈γj, µ̂− ρµ̂〉 − 2〈γj, µ̂〉 = 2.

Since ρµ̂ − µ̂ is 0 on the set of fixed points of w0, it is in particular 0 on the orthogonal
complement of {γ1, . . . , γs}. Thus ∑

i

γ̂i = µ̂− ρµ̂.

However if λ is a weight,

λ
(
ρ(w0)w

−1
0

)
= λ

∏ϕi

((
−1 0
0 −1

)) = (−1)
〈
λ,
∑
γ̂i
〉
.

Let s in T be defined by
λ(s) = (−1)〈λ,µ̂〉.

Then
λ
(
ρ(s)

)
= (−1)〈λ,ρµ̂〉

and if w = sw0 then
λ
(
ρ(w)w−1

)
= 1.

Consequently w ∈ G(R).
The technique of construction exposed by Deligne involves five steps. To verify a statement

for the groups amenable to this treatment one must:
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(i) Verify it for abelian groups.
(ii) Verify it for the group of symplectic similitudes.
(iii) Verify that if we have (G1, h1) ↪→ (G2, h2) and if the statement is true for the larger

group than it is true for the smaller.
(iv) Verify that if it is true for (G, h) and δ : S → C where C is the connected component

of the centre of G, then it is also true for (G, hδ).
(v) Devise a method of descent.
The solution I have suggested to the second problem, is unsuitable for descent and

the solution for the second is unsuitable for passage to a subgroup; so a reformulation is
necessary.

To clarify the situation with respect to the second problem, I shall prove a lemma,
otherwise rather useless. Let Z be the centre of G and let Z0 be its connected component
in the algebraic sense. Set

S(C) = lim←−
K

S(C).

If E(G, h) ⊆ E ⊆ R let
ρ : S(C)→ S(C)

be the involution defined by complex conjugation and let ϕ be the map obtained from
g → gw. Then ψ = ρ ◦ ϕ−1 is complex analytic on each SK(C) and commutes with the
action of G(Af ). To see the possibilities for ρ we need only see those for ψ.

Suppose x ∈ g(Af ) and x normalizes G(Q). Set
γ′ = xγx−1.

If x = (xp) it is clear that the image of xp in Gad(Qp) actually lies in Gad(Q) and is
independent of p. Thus γ → γ′ extends to an automorphism of G(R). Suppose there is a
γ ∈ G(R) so that

h(s) = y−1h′(s)y s ∈ S(R).

Then the map g = (g∞, gf ) → (g′∞y, xgf ) commutes with G(Af ) and yields a complex
analytic homomorphism ψx,y of each SK(C). I claim ψ must be of this form.

Observe by the way, that if δ ∈ G(Q) then
ψδx,δy = ψx,y.

and that if x ∈ Z(Af ) then y ∈ K∞ and
ψx,y = ψx,1.

Observe also that if
H1
(
G(Q/Q), Z(Q)

)
= 1

or more generally, if G(Q)→ Gad(Q) is surjective then any x satisfying the above conditions
is always of the form

x = δx′

with δ ∈ G(Q) and x′ ∈ X(Af ).

Lemma. Suppose ψ is a compatible family of complex-analytic homeomorphisms of the
SK(C) which commutes with G(Af ). Then there is an x and a y so that

ψ = ψx,y.
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Let
S0
K(C) = G(Q) ∩G′(R)K\G1(R)K/K∞K

(
G1(R) = G0(R)K∞

)
be the connected component of SK(C). Let s0K be the point of SK(C) represented by 1. If
ψK is the image of SK(C) defined by ψ let ψK(s0K) be represented by

(
g∞(K), gf (K)

)
. If

K ⊇ K ′ then we may take
(
g∞(K ′), gf (K

′)
)
to be of the form

(
g∞(K), gf (K)k(K ′)

)
with

k(K ′) ∈ K. As a consequence, we may take(
g∞(K), gf (K)

)
= (g0∞, g

0
f )

to be independent of K.
Moreover because of real approximation we may take g∞(K) ∈ G0(R).
The map ψK yields
G(Q) ∩G1(R)K\G1(R)K/K∞K → G(Q) ∩G1(R)g0fK(g0f )

−1\G1(R)g0fK/K∞K.

Passing to covering spaces, we obtain a map
G1(R)K/K∞K = G1(R)g0fK/K∞K ' G1(R)/K∞,

which maps 1→ (g0∞, g
0
f ). This map is independent of K. It must be of the form

g∞ → (g′′∞y, g
0
f )

where g∞ → g′′∞ is an automorphism of G0(R), defined only modulo the largest normal
subgroup of G0(R) lying in K∞. Moreover y ∈ G0(R) and k → y−1k′′y takes K∞ to itself
and

h(s) = y−1h′′(s)y s ∈ S(R).

Then for any g∞ ∈ G0(R) and gf ∈ G(Ap) the image of the point represented by (g∞, gf )
represented by (g′∞y, g

0
fgf ).

For example, if γ ∈ G(Q) ∩G0(R) and γf is its image in G(Af ) then the image of the
point represented by (γ, γγ−1

f ) = (γ, 1) is represented by either (y, g0fγ−1
f ) or (γ′′y , g0f ). Thus

for each K there is a δK in G(Q), a uK in K∞, and a kK in K so that
δKγ

′′yuK = y

δKg
0
fkK = g0fγ

−1
f

If K ⊇ K ′

δ−1
K′ δK ∈ γ′′yK∞y

−1(γ′)−1

δ−1
K′ δK ∈ g0fK(g0f )

−1

Thus for K sufficiently small δ−1
K′ δK ∈ Z(Q). Letting K shrink we see that

δK = g0fγ
−1
f (g0f )

−1

in(??) Gad(Af ). This implies that the image of g0f in Gad(Af ) actually lies in Gad(Q) and
hence that if x = g0f then

γ → γ′ = xγx−1

is an automorphism of G(Q).
Set δK = εK(γ

′)−1 with, for K small, εK ∈ Z(Q). Then
εKkK = 1

εK(γ
′)−1γ′′yuK = y
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Thus
γ′′y ∈ γ′yK∞.

By real approximation, this is true in G0(R); so we may suppose γ′′ = γ′. On G0(R)G(Af )
our map ψ is represented by

g = (g∞, gf )→ (g′∞y, xgf )

that is by ψx,y. Since
G(A) = G(Q)G0(R)G(Af ),

we have
ψ = ψx,y

As a preparation for the discussion to follow, I consider the two problems for abelian
groups. If G = T is abelian then SK(C) = SK(Q) is just a finite set of points on which
G(Q/E) acts. τSK(C) is again a finite set of points on which G(Q/τE) acts. If x ∈ SK(C)
and σ ∈ G(Q/E) then

τ(σx) = τστ−1(τx)

and both τx and τ(σx) lie in τSK(C) the Galois groups act through their abelian quotients.
The map σ → τστ−1 of G(Q/E) to G(Q/τE) and the map α → τ(α) of IE to IτE are
compatible with the isomorphisms of class field theory.

To verify that the suggested solution to the first problem is correct for T , I use the
definitions of §3.9 and §3.10 of Travaux de Shimura. All I have to do is show that

E∗ T

τE∗ τT

r′(h)

r′(τh)

is commutative. I should perhaps be explicit about the nature of this diagram. The lattice
of weights of E∗ and τE∗ are

L(E∗) = Ind
(
G(Q/Q),G(Q/E),Z

)
L(τE∗) = Ind

(
G(Q/Q),G(Q/τE),Z

)
Both lattices are therefore lattices of integral-valued functions on G(Q/Q). The map
{xσ} → {x′σ = xτσ} is an isomorphism of the second module with the first. r′(h) takes the
weight λ of T to

σ → 〈σλ, µ̂〉.
r′(τh) takes λ to

σ → 〈σλ, τ µ̂〉.
Since

〈τσλ, τ µ̂〉 = 〈σλ, µ̂〉
the commutativity is clear.

If E is real then the action of complex conjugation is given by an element of E∗(R). Since
E∗(R) → T (R) and T (R) acts trivially, the action is trivial. This is what the suggested
solution to the second problem demands.

Let me now describe what seems to be the proper form of the second problem. I am not
yet able to suggest a solution. Suppose we have ϕ : (T, h)→ (G, h) and we have a weakly
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canonical model {SK/E} with E ⊇ E(G, h). Let τ be an automorphism of C over E. It
should be possible to show the existence of a g ∈ G(Q) and ab ∈ G(Af ) so that

(i) The homomorphism
ϕ′ : t→ gtg−1

from T to G is defined over Q.
(ii) The homomorphism

h′ : s→ gτh(s)g−1

from S to G over R is in the class of h.
(iii) The diagram

S(T, h) S(G, h)

S(T, τh) S(G, h)

S(G, h)

ϕ

∼

τ

ϕ′
b

is commutative. Here b is acting through right multiplication and the isomorphism
on the left is an isomorphism of sets which has been described above.

The pair (g, b) is not unique. If γ ∈ G(Q) we could replace (g, b) by (γg, γb). Up to such
obvious changes one also wants to explicitly characterize the pair (g, b).

For the first problem, one reasonably explicit way of assigning to any automorphism τ
of C over Q a cocycle {aσ} of G(Q/Q) in T (Q), a trivialization

1 = b−1aσσ(b)

of the cocycle in T (Af ), and a d in G(Ag) so that
(i) If τG is defined as {

g ∈ G
∣∣ aσσ(g)a−1

σ = g
}

and if
τK =

{
bkb−1

∣∣ k ∈ K }
then {τSK/τE} yields a canonical model for

{
SτK(C : τG, τh)

}
. As before

τh(s) = h(s)

because h : S → T and T (R) ⊆ τG(R).
(ii) Let d′ = bdb−1 ∈ τG(Af ) and let ϕ′ be ϕ regarded as a map from T to τG. It must

be possible to choose the family of maps defining the canonical model
ψ : τSK(C)→ SτK(C)

so that
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S(T, h) S(G, h)

S(T, τh) τS(G, h)

S(τG, τh)

S(τG, τh)

∼

τ

ϕ′

ψ

d′

is commutative.
Both these problems are however unsatisfying vague; some thought will have to be given

to their precise formulation.
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